Robust Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Robust Statistics PDF full book. Access full book title Robust Statistics by Ricardo A. Maronna. Download full books in PDF and EPUB format.

Robust Statistics

Robust Statistics PDF Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466

Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

Robust Statistics

Robust Statistics PDF Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466

Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.

A Guide to Robust Statistical Methods

A Guide to Robust Statistical Methods PDF Author: Rand R. Wilcox
Publisher: Springer Nature
ISBN: 3031417135
Category : Mathematics
Languages : en
Pages : 335

Book Description
Robust statistical methods are now being used in a wide range of disciplines. The appeal of these methods is that they are designed to perform about as well as classic techniques when standard assumptions are true—but they continue to perform well in situations where classic methods perform poorly. This book provides a relatively non-technical guide to modern methods. The focus is on applying modern methods using R, understanding when and why classic methods can be unsatisfactory, and fostering a conceptual understanding of the relative merits of different techniques. A recurring theme is that no single method reveals everything one would like to know about the population under study. An appeal of robust methods is that under general conditions they provide much higher power than conventional techniques. Perhaps more importantly, they help provide a deeper and more nuanced understanding of data. The book is for readers who had at least one semester of statistics, aimed at non-statisticians.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing PDF Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0123869838
Category : Mathematics
Languages : en
Pages : 713

Book Description
"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--

Robust Statistics

Robust Statistics PDF Author: Ricardo A. Maronna
Publisher: Wiley
ISBN: 9780470010921
Category : Mathematics
Languages : en
Pages : 436

Book Description
Classical statistical techniques fail to cope well with deviations from a standard distribution. Robust statistical methods take into account these deviations while estimating the parameters of parametric models, thus increasing the accuracy of the inference. Research into robust methods is flourishing, with new methods being developed and different applications considered. Robust Statistics sets out to explain the use of robust methods and their theoretical justification. It provides an up-to-date overview of the theory and practical application of the robust statistical methods in regression, multivariate analysis, generalized linear models and time series. This unique book: Enables the reader to select and use the most appropriate robust method for their particular statistical model. Features computational algorithms for the core methods. Covers regression methods for data mining applications. Includes examples with real data and applications using the S-Plus robust statistics library. Describes the theoretical and operational aspects of robust methods separately, so the reader can choose to focus on one or the other. Supported by a supplementary website featuring time-limited S-Plus download, along with datasets and S-Plus code to allow the reader to reproduce the examples given in the book. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is ideal for researchers, practitioners and graduate students of statistics, electrical, chemical and biochemical engineering, and computer vision. There is also much to benefit researchers from other sciences, such as biotechnology, who need to use robust statistical methods in their work.

Introduction to Robust Estimation and Hypothesis Testing

Introduction to Robust Estimation and Hypothesis Testing PDF Author: Rand R. Wilcox
Publisher: Academic Press
ISBN: 0127515429
Category : Mathematics
Languages : en
Pages : 610

Book Description
This revised book provides a thorough explanation of the foundation of robust methods, incorporating the latest updates on R and S-Plus, robust ANOVA (Analysis of Variance) and regression. It guides advanced students and other professionals through the basic strategies used for developing practical solutions to problems, and provides a brief background on the foundations of modern methods, placing the new methods in historical context. Author Rand Wilcox includes chapter exercises and many real-world examples that illustrate how various methods perform in different situations. Introduction to Robust Estimation and Hypothesis Testing, Second Edition, focuses on the practical applications of modern, robust methods which can greatly enhance our chances of detecting true differences among groups and true associations among variables. * Covers latest developments in robust regression * Covers latest improvements in ANOVA * Includes newest rank-based methods * Describes and illustrated easy to use software

Understanding and Applying Basic Statistical Methods Using R

Understanding and Applying Basic Statistical Methods Using R PDF Author: Rand R. Wilcox
Publisher: John Wiley & Sons
ISBN: 1119061415
Category : Social Science
Languages : en
Pages : 531

Book Description
Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.

Fundamentals of Modern Statistical Methods

Fundamentals of Modern Statistical Methods PDF Author: Rand R. Wilcox
Publisher: Springer Science & Business Media
ISBN: 1441955240
Category : Social Science
Languages : en
Pages : 255

Book Description
Conventional statistical methods have a very serious flaw. They routinely miss differences among groups or associations among variables that are detected by more modern techniques, even under very small departures from normality. Hundreds of journal articles have described the reasons standard techniques can be unsatisfactory, but simple, intuitive explanations are generally unavailable. Situations arise where even highly nonsignificant results become significant when analyzed with more modern methods. Without assuming the reader has any prior training in statistics, Part I of this book describes basic statistical principles from a point of view that makes their shortcomings intuitive and easy to understand. The emphasis is on verbal and graphical descriptions of concepts. Part II describes modern methods that address the problems covered in Part I. Using data from actual studies, many examples are included to illustrate the practical problems with conventional procedures and how more modern methods can make a substantial difference in the conclusions reached in many areas of statistical research. The second edition of this book includes a number of advances and insights that have occurred since the first edition appeared. Included are new results relevant to medians, regression, measures of association, strategies for comparing dependent groups, methods for dealing with heteroscedasticity, and measures of effect size.

Robust Methods in Biostatistics

Robust Methods in Biostatistics PDF Author: Stephane Heritier
Publisher: Wiley
ISBN: 9780470027264
Category : Medical
Languages : en
Pages : 294

Book Description
Robust statistics is an extension of classical statistics that specifically takes into account the concept that the underlying models used to describe data are only approximate. Its basic philosophy is to produce statistical procedures which are stable when the data do not exactly match the postulated models as it is the case for example with outliers. Robust Methods in Biostatistics proposes robust alternatives to common methods used in statistics in general and in biostatistics in particular and illustrates their use on many biomedical datasets. The methods introduced include robust estimation, testing, model selection, model check and diagnostics. They are developed for the following general classes of models: Linear regression Generalized linear models Linear mixed models Marginal longitudinal data models Cox survival analysis model The methods are introduced both at a theoretical and applied level within the framework of each general class of models, with a particular emphasis put on practical data analysis. This book is of particular use for research students,applied statisticians and practitioners in the health field interested in more stable statistical techniques. An accompanying website provides R code for computing all of the methods described, as well as for analyzing all the datasets used in the book.

A Statistical Guide for the Ethically Perplexed

A Statistical Guide for the Ethically Perplexed PDF Author: Lawrence Hubert
Publisher: CRC Press
ISBN: 1439873690
Category : Mathematics
Languages : en
Pages : 568

Book Description
Exploring the intersection of ethics and statistics, this comprehensive guide illustrates the proper use of probabilistic and statistical reasoning in the behavioral, social, and biomedical sciences. Lauded for their contributions to statistics, psychology, and psychometrics, the authors make statistical methods relevant to readers' day-to-day lives by including real historical situations that demonstrate the role of statistics in reasoning and decision making. In addition, seven U.S. Supreme Court decisions reflect the influence of statistical and psychometric reasoning and interpretation/misinterpretation.

Algorithms, Routines, and S-Functions for Robust Statistics

Algorithms, Routines, and S-Functions for Robust Statistics PDF Author: Alfio Marazzi
Publisher: CRC Press
ISBN: 9780412079917
Category : Mathematics
Languages : en
Pages : 452

Book Description
ROBETH (written in ANSI FORTRAN 77) is a systematized collection of algorithms that allows computation of a broad class of procedures based on M- and high-breakdown point estimation, including robust regression, robust testing of linear hypotheses, and robust coveriances. This book describes the computational procedures included in ROBETH. Each chapter is organized into three parts: 1. An overview of the theoretical background for the statistical and numerical methods 2. A detailed description of the corresponding FORTRAN subroutines and of the numerical algorithms as they are implemented 3. The scripts of several examples concerning the use of ROBETH by means of the S-PLUS interface, including some examples of high-level S functions.