Author: Eugenio Oñate
Publisher: Springer Science & Business Media
ISBN: 1402087438
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.
Structural Analysis with the Finite Element Method. Linear Statics
Author: Eugenio Oñate
Publisher: Springer Science & Business Media
ISBN: 1402087438
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.
Publisher: Springer Science & Business Media
ISBN: 1402087438
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elastic foundations, stress smoothing, error estimation and adaptive mesh refinement techniques, among others. The text concludes with a chapter on the mesh generation and visualization of FEM results. The book will be useful for students approaching the finite element analysis of structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis. STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 2: Beams, Plates and Shells Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM).The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume 2 presents a detailed description of the finite element formulation for analysis of slender and thick beams, thin and thick plates, folded plate structures, axisymmetric shells, general curved shells, prismatic structures and three dimensional beams. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems Emphasis is put on the treatment of structures with layered composite materials. The book will be useful for students approaching the finite element analysis of beam, plate and shell structures for the first time, as well as for practising engineers interested in the details of the formulation and performance of the different finite elements for practical structural analysis.
Finite Strip Method in Structural Analysis
Author: Y. K. Cheung
Publisher: Elsevier
ISBN: 1483278549
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Finite Strip Method in Structural Analysis is a concise introduction to the theory of the finite strip method and its application to structural engineering, with special reference to practical structures such as slab bridges and box girder bridges. Topics covered include the bending of plates and plate-beam systems, with application to slab-beam bridges; plane stress analysis; vibration and stability of plates and shells; and finite layer and finite prism methods. Comprised of eight chapters, this book begins with an overview of the theory of the finite strip method, highlighting the importance of the choice of suitable displacement functions for a strip as well as the formulation of strip characteristics. Subsequent chapters consider many different types of finite strips for plate and shell problems and present numerical examples. The extension of the finite strip method to three-dimensional problems is then described, with emphasis on the finite layer method and the finite prism method. The final chapter discusses some computer methods that are commonly used in structural analysis. A folded plate computer program is included for completeness, and a detailed description for a worked problem is also presented for the sake of clarity. This monograph will be of interest to civil and structural engineers.
Publisher: Elsevier
ISBN: 1483278549
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Finite Strip Method in Structural Analysis is a concise introduction to the theory of the finite strip method and its application to structural engineering, with special reference to practical structures such as slab bridges and box girder bridges. Topics covered include the bending of plates and plate-beam systems, with application to slab-beam bridges; plane stress analysis; vibration and stability of plates and shells; and finite layer and finite prism methods. Comprised of eight chapters, this book begins with an overview of the theory of the finite strip method, highlighting the importance of the choice of suitable displacement functions for a strip as well as the formulation of strip characteristics. Subsequent chapters consider many different types of finite strips for plate and shell problems and present numerical examples. The extension of the finite strip method to three-dimensional problems is then described, with emphasis on the finite layer method and the finite prism method. The final chapter discusses some computer methods that are commonly used in structural analysis. A folded plate computer program is included for completeness, and a detailed description for a worked problem is also presented for the sake of clarity. This monograph will be of interest to civil and structural engineers.
Handbook On Timoshenko-ehrenfest Beam And Uflyand- Mindlin Plate Theories
Author: Isaac E Elishakoff
Publisher: World Scientific
ISBN: 9813236531
Category : Technology & Engineering
Languages : en
Pages : 798
Book Description
The refined theory of beams, which takes into account both rotary inertia and shear deformation, was developed jointly by Timoshenko and Ehrenfest in the years 1911-1912. In over a century since the theory was first articulated, tens of thousands of studies have been performed utilizing this theory in various contexts. Likewise, the generalization of the Timoshenko-Ehrenfest beam theory to plates was given by Uflyand and Mindlin in the years 1948-1951.The importance of these theories stems from the fact that beams and plates are indispensable, and are often occurring elements of every civil, mechanical, ocean, and aerospace structure.Despite a long history and many papers, there is not a single book that summarizes these two celebrated theories. This book is dedicated to closing the existing gap within the literature. It also deals extensively with several controversial topics, namely those of priority, the so-called 'second spectrum' shear coefficient, and other issues, and shows vividly that the above beam and plate theories are unnecessarily overcomplicated.In the spirit of Einstein's dictum, 'Everything should be made as simple as possible but not simpler,' this book works to clarify both the Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories, and seeks to articulate everything in the simplest possible language, including their numerous applications.This book is addressed to graduate students, practicing engineers, researchers in their early career, and active scientists who may want to have a different look at the above theories, as well as readers at all levels of their academic or scientific career who want to know the history of the subject. The Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories are the key reference works in the study of stocky beams and thick plates that should be given their due and remain important for generations to come, since classical Bernoulli-Euler beam and Kirchhoff-Love theories are applicable for slender beams and thin plates, respectively.Related Link(s)
Publisher: World Scientific
ISBN: 9813236531
Category : Technology & Engineering
Languages : en
Pages : 798
Book Description
The refined theory of beams, which takes into account both rotary inertia and shear deformation, was developed jointly by Timoshenko and Ehrenfest in the years 1911-1912. In over a century since the theory was first articulated, tens of thousands of studies have been performed utilizing this theory in various contexts. Likewise, the generalization of the Timoshenko-Ehrenfest beam theory to plates was given by Uflyand and Mindlin in the years 1948-1951.The importance of these theories stems from the fact that beams and plates are indispensable, and are often occurring elements of every civil, mechanical, ocean, and aerospace structure.Despite a long history and many papers, there is not a single book that summarizes these two celebrated theories. This book is dedicated to closing the existing gap within the literature. It also deals extensively with several controversial topics, namely those of priority, the so-called 'second spectrum' shear coefficient, and other issues, and shows vividly that the above beam and plate theories are unnecessarily overcomplicated.In the spirit of Einstein's dictum, 'Everything should be made as simple as possible but not simpler,' this book works to clarify both the Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories, and seeks to articulate everything in the simplest possible language, including their numerous applications.This book is addressed to graduate students, practicing engineers, researchers in their early career, and active scientists who may want to have a different look at the above theories, as well as readers at all levels of their academic or scientific career who want to know the history of the subject. The Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories are the key reference works in the study of stocky beams and thick plates that should be given their due and remain important for generations to come, since classical Bernoulli-Euler beam and Kirchhoff-Love theories are applicable for slender beams and thin plates, respectively.Related Link(s)
Sixty Shades of Generalized Continua
Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 3031261860
Category : Science
Languages : en
Pages : 781
Book Description
In this book, well-known scientists discuss modern aspects of generalized continua, in order to better understand modern materials and advanced structures. They possess complicated internal structure, and it requires the development of new approaches to model such structures and new effects caused by it. This book combines fundamental contributions in honor of Victor Eremeyev and his 60th birthday.
Publisher: Springer Nature
ISBN: 3031261860
Category : Science
Languages : en
Pages : 781
Book Description
In this book, well-known scientists discuss modern aspects of generalized continua, in order to better understand modern materials and advanced structures. They possess complicated internal structure, and it requires the development of new approaches to model such structures and new effects caused by it. This book combines fundamental contributions in honor of Victor Eremeyev and his 60th birthday.
Numerical Methods in Structural Mechanics
Author: Zdenek Bittnar
Publisher: Thomas Telford
ISBN: 9780727725554
Category : Mathematics
Languages : en
Pages : 438
Book Description
A detailed presentation is offered of the fundamental equations in solid mechanics focusing on constitutive equations including quasibrittle materials. Details are provided on individual numerical algorithms, with a heavier emphasis placed on the understanding of basic principles.
Publisher: Thomas Telford
ISBN: 9780727725554
Category : Mathematics
Languages : en
Pages : 438
Book Description
A detailed presentation is offered of the fundamental equations in solid mechanics focusing on constitutive equations including quasibrittle materials. Details are provided on individual numerical algorithms, with a heavier emphasis placed on the understanding of basic principles.
Advances in Engineering Structures, Mechanics & Construction
Author: M. Pandey
Publisher: Springer Science & Business Media
ISBN: 1402048912
Category : Science
Languages : en
Pages : 847
Book Description
This book presents the proceedings of an International Conference on Advances in Engineering Structures, Mechanics & Construction, held in Waterloo, Ontario, Canada, May 14-17, 2006. The contents include contains the texts of all three plenary presentations and all seventy-three technical papers by more than 153 authors, presenting the latest advances in engineering structures, mechanics and construction research and practice.
Publisher: Springer Science & Business Media
ISBN: 1402048912
Category : Science
Languages : en
Pages : 847
Book Description
This book presents the proceedings of an International Conference on Advances in Engineering Structures, Mechanics & Construction, held in Waterloo, Ontario, Canada, May 14-17, 2006. The contents include contains the texts of all three plenary presentations and all seventy-three technical papers by more than 153 authors, presenting the latest advances in engineering structures, mechanics and construction research and practice.
The Finite Strip Method
Author: Y. K. Cheung
Publisher: CRC Press
ISBN: 1000098966
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
The increase in the popularity and the number of potential applications of the finite strip method has created a demand for a definitive text/reference on the subject. Fulfilling this demand, The Finite Strip Method provides practicing engineers, researchers, and students with a comprehensive introduction and theoretical development, and a complete treatment of current practical applications of the method. Written by experts who are arguably the world's leading authorities in the field, The Finite Strip Method covers both the classical strip and the newly developed spline strip and computed shape function strip. Applications in structural engineering, with particular focus on practical structures such as slab-beam bridges, box girder bridges, and tall buildings are discussed extensively. Applications in geotechnology are also covered, as are recently formulated applications in nonlinear analysis. The Finite Strip Method is a unique book, supplying much-needed information by well-known and highly regarded authors.
Publisher: CRC Press
ISBN: 1000098966
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
The increase in the popularity and the number of potential applications of the finite strip method has created a demand for a definitive text/reference on the subject. Fulfilling this demand, The Finite Strip Method provides practicing engineers, researchers, and students with a comprehensive introduction and theoretical development, and a complete treatment of current practical applications of the method. Written by experts who are arguably the world's leading authorities in the field, The Finite Strip Method covers both the classical strip and the newly developed spline strip and computed shape function strip. Applications in structural engineering, with particular focus on practical structures such as slab-beam bridges, box girder bridges, and tall buildings are discussed extensively. Applications in geotechnology are also covered, as are recently formulated applications in nonlinear analysis. The Finite Strip Method is a unique book, supplying much-needed information by well-known and highly regarded authors.
Developments in Tall Buildings, 1983
Author: Lynn S. Beedle
Publisher:
ISBN:
Category : Architecture
Languages : en
Pages : 920
Book Description
Publisher:
ISBN:
Category : Architecture
Languages : en
Pages : 920
Book Description
Thin-Walled Structures - Advances and Developments
Author: J. Zaras
Publisher: Elsevier
ISBN: 008055170X
Category : Technology & Engineering
Languages : en
Pages : 779
Book Description
This volume contains the papers presented at the Third International Conference on Thin-Walled Structures, Cracow, Poland on June 5-7, 2001. There has been a substantial growth in knowledge in the field of Thin-Walled Structures over the past few decades. Lightweight structures are in widespread use in the Civil Engineering, Mechanical Engineering, Aeronautical, Automobile, Chemical and Offshore Engineering fields. The development of new processes, new methods of connections, new materials has gone hand-in-hand with the evolution of advanced analytical methods suitable for dealing with the increasing complexity of the design work involved in ensuring safety and confidence in the finished products.Of particular importance with regard to the analytical process is the growth in use of the finite element method. This method, about 40 years ago, was confined to rather specialist use, mainly in the aeronautical field, because of its requirements for substantial calculation capacity. The development over recent years of extremely powerful microcomputers has ensured that the application of the finite element method is now possible for problems in all fields of engineering, and a variety of finite element packages have been developed to enhance the ease of use and the availability of the method in the engineering design process.
Publisher: Elsevier
ISBN: 008055170X
Category : Technology & Engineering
Languages : en
Pages : 779
Book Description
This volume contains the papers presented at the Third International Conference on Thin-Walled Structures, Cracow, Poland on June 5-7, 2001. There has been a substantial growth in knowledge in the field of Thin-Walled Structures over the past few decades. Lightweight structures are in widespread use in the Civil Engineering, Mechanical Engineering, Aeronautical, Automobile, Chemical and Offshore Engineering fields. The development of new processes, new methods of connections, new materials has gone hand-in-hand with the evolution of advanced analytical methods suitable for dealing with the increasing complexity of the design work involved in ensuring safety and confidence in the finished products.Of particular importance with regard to the analytical process is the growth in use of the finite element method. This method, about 40 years ago, was confined to rather specialist use, mainly in the aeronautical field, because of its requirements for substantial calculation capacity. The development over recent years of extremely powerful microcomputers has ensured that the application of the finite element method is now possible for problems in all fields of engineering, and a variety of finite element packages have been developed to enhance the ease of use and the availability of the method in the engineering design process.
Dynamics of Structures
Author: José Manuel Roesset Vinuesa
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 926
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 926
Book Description