A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions PDF full book. Access full book title A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions by Jean-Luc Marichal. Download full books in PDF and EPUB format.

A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions

A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions PDF Author: Jean-Luc Marichal
Publisher: Springer Nature
ISBN: 3030950883
Category : Mathematics
Languages : en
Pages : 325

Book Description
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.

A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions

A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions PDF Author: Jean-Luc Marichal
Publisher: Springer Nature
ISBN: 3030950883
Category : Mathematics
Languages : en
Pages : 325

Book Description
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.

A Generalization of Completely Convex Functions

A Generalization of Completely Convex Functions PDF Author: Murray H. Protter
Publisher:
ISBN:
Category : Laplace transformation
Languages : en
Pages : 42

Book Description


Convex Functions

Convex Functions PDF Author:
Publisher: Academic Press
ISBN: 0080873723
Category : Mathematics
Languages : en
Pages : 321

Book Description
Convex Functions

Convexity and Duality in Optimization

Convexity and Duality in Optimization PDF Author: Jacob Ponstein
Publisher: Springer Science & Business Media
ISBN: 3642456103
Category : Business & Economics
Languages : en
Pages : 151

Book Description
The analysis and optimization of convex functions have re ceived a great deal of attention during the last two decades. If we had to choose two key-words from these developments, we would retain the concept of ~ubdi66~e~ and the duality theo~y. As it usual in the development of mathematical theories, people had since tried to extend the known defi nitions and properties to new classes of functions, including the convex ones. For what concerns the generalization of the notion of subdifferential, tremendous achievements have been carried out in the past decade and any rna·· thematician who is faced with a nondifferentiable nonconvex function has now a panoply of generalized subdifferentials or derivatives at his disposal. A lot remains to be done in this area, especially concerning vecto~-valued functions ; however we think the golden age for these researches is behind us. Duality theory has also fascinated many mathematicians since the underlying mathematical framework has been laid down in the context of Convex Analysis. The various duality schemes which have emerged in the re cent years, despite of their mathematical elegance, have not always proved as powerful as expected.

Convex Functions and Their Applications

Convex Functions and Their Applications PDF Author: Constantin P. Niculescu
Publisher: Springer
ISBN: 3319783378
Category : Mathematics
Languages : en
Pages : 430

Book Description
Thorough introduction to an important area of mathematics Contains recent results Includes many exercises

Generalized Convexity and Optimization

Generalized Convexity and Optimization PDF Author: Alberto Cambini
Publisher: Springer Science & Business Media
ISBN: 3540708766
Category : Mathematics
Languages : en
Pages : 252

Book Description
The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

An Easy Path to Convex Analysis and Applications

An Easy Path to Convex Analysis and Applications PDF Author: Boris S. Mordukhovich
Publisher: Morgan & Claypool Publishers
ISBN: 1627052380
Category : Mathematics
Languages : en
Pages : 219

Book Description
Convex optimization has an increasing impact on many areas of mathematics, applied sciences, and practical applications. It is now being taught at many universities and being used by researchers of different fields. As convex analysis is the mathematical f

Introduction to Optimum Design

Introduction to Optimum Design PDF Author: Jasbir Singh Arora
Publisher: Academic Press
ISBN: 012381376X
Category : Technology & Engineering
Languages : en
Pages : 897

Book Description
Introduction to Optimum Design, Third Edition describes an organized approach to engineering design optimization in a rigorous yet simplified manner. It illustrates various concepts and procedures with simple examples and demonstrates their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB® are featured as learning and teaching aids. - Basic concepts of optimality conditions and numerical methods are described with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Introduction to MATLAB Optimization Toolbox - Practical design examples introduce students to the use of optimization methods early in the book - New example problems throughout the text are enhanced with detailed illustrations - Optimum design with Excel Solver has been expanded into a full chapter - New chapter on several advanced optimum design topics serves the needs of instructors who teach more advanced courses

Lectures on Convex Optimization

Lectures on Convex Optimization PDF Author: Yurii Nesterov
Publisher: Springer
ISBN: 3319915789
Category : Mathematics
Languages : en
Pages : 603

Book Description
This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.