Author: Jason H. Goodfriend
Publisher: Jones & Bartlett Learning
ISBN: 9780763727338
Category : Computers
Languages : en
Pages : 346
Book Description
A Gateway to Higher Mathematics integrates the process of teaching students how to do proofs into the framework of displaying the development of the real number system. The text eases the students into learning how to construct proofs, while preparing students how to cope with the type of proofs encountered in the higher-level courses of abstract algebra, analysis, and number theory. After using this text, the students will not only know how to read and construct proofs, they will understand much about the basic building blocks of mathematics. The text is designed so that the professor can choose the topics to be emphasized, while leaving the remainder as a reference for the students.
A Gateway to Higher Mathematics
Author: Jason H. Goodfriend
Publisher: Jones & Bartlett Learning
ISBN: 9780763727338
Category : Computers
Languages : en
Pages : 346
Book Description
A Gateway to Higher Mathematics integrates the process of teaching students how to do proofs into the framework of displaying the development of the real number system. The text eases the students into learning how to construct proofs, while preparing students how to cope with the type of proofs encountered in the higher-level courses of abstract algebra, analysis, and number theory. After using this text, the students will not only know how to read and construct proofs, they will understand much about the basic building blocks of mathematics. The text is designed so that the professor can choose the topics to be emphasized, while leaving the remainder as a reference for the students.
Publisher: Jones & Bartlett Learning
ISBN: 9780763727338
Category : Computers
Languages : en
Pages : 346
Book Description
A Gateway to Higher Mathematics integrates the process of teaching students how to do proofs into the framework of displaying the development of the real number system. The text eases the students into learning how to construct proofs, while preparing students how to cope with the type of proofs encountered in the higher-level courses of abstract algebra, analysis, and number theory. After using this text, the students will not only know how to read and construct proofs, they will understand much about the basic building blocks of mathematics. The text is designed so that the professor can choose the topics to be emphasized, while leaving the remainder as a reference for the students.
Linear Algebra: Gateway to Mathematics: Second Edition
Author: Robert Messer
Publisher: American Mathematical Soc.
ISBN: 1470462958
Category : Education
Languages : en
Pages : 420
Book Description
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.
Publisher: American Mathematical Soc.
ISBN: 1470462958
Category : Education
Languages : en
Pages : 420
Book Description
Linear Algebra: Gateway to Mathematics uses linear algebra as a vehicle to introduce students to the inner workings of mathematics. The structures and techniques of mathematics in turn provide an accessible framework to illustrate the powerful and beautiful results about vector spaces and linear transformations. The unifying concepts of linear algebra reveal the analogies among three primary examples: Euclidean spaces, function spaces, and collections of matrices. Students are gently introduced to abstractions of higher mathematics through discussions of the logical structure of proofs, the need to translate terminology into notation, and efficient ways to discover and present proofs. Application of linear algebra and concrete examples tie the abstract concepts to familiar objects from algebra, geometry, calculus, and everyday life. Students will finish a course using this text with an understanding of the basic results of linear algebra and an appreciation of the beauty and utility of mathematics. They will also be fortified with a degree of mathematical maturity required for subsequent courses in abstract algebra, real analysis, and elementary topology. Students who have prior background in dealing with the mechanical operations of vectors and matrices will benefit from seeing this material placed in a more general context.
The Definitive Guide to Learning Higher Mathematics
Author: Math Vault
Publisher: Math Vault Publishing
ISBN:
Category : Mathematics
Languages : en
Pages : 86
Book Description
The Definitive Guide to Learning Higher Mathematics is a comprehensive, illustrated guide to help you optimize higher mathematical learning, thinking and problem solving through 10 foundational principles and countless actionable tips. In 10 chapters and 86 pages, it’ll take you around the different aspects of higher mathematical learning, leaving no stone unturned from material selection, big picture thinking, proximal zone, cognitive techniques to proactive learning, head-processing, scientific method and social learning. Hightlights - Extensive actionable tips to illustrate each principle involved - Extensive annotations, pro-tips, quotes and illustrations for better insight - Carefully prepared after-chapter summaries for better understanding - Printable PDF format (8.5 in. x 11 in.) with linkable table of contents and index for handy reference and reviewing Table of Contents 0. Preface 1. Choose Your Materials Judiciously 2. Always Keep the Big Picture in Mind 3. Operate within the Proximal Zone 4. Isolate Until Mastered Before Moving On 5. Be a Proactive, Independent Thinker and Learner 6. Do Most Things Inside Your Head 7. Practice the Scientific Method in a Creative Way 8. Don’t Fret Too Much About Real-life Applicability 9. Scale Up Learning by Going Social 10. Embrace the Mathematical Experience 11. Last Few Words 12. Index
Publisher: Math Vault Publishing
ISBN:
Category : Mathematics
Languages : en
Pages : 86
Book Description
The Definitive Guide to Learning Higher Mathematics is a comprehensive, illustrated guide to help you optimize higher mathematical learning, thinking and problem solving through 10 foundational principles and countless actionable tips. In 10 chapters and 86 pages, it’ll take you around the different aspects of higher mathematical learning, leaving no stone unturned from material selection, big picture thinking, proximal zone, cognitive techniques to proactive learning, head-processing, scientific method and social learning. Hightlights - Extensive actionable tips to illustrate each principle involved - Extensive annotations, pro-tips, quotes and illustrations for better insight - Carefully prepared after-chapter summaries for better understanding - Printable PDF format (8.5 in. x 11 in.) with linkable table of contents and index for handy reference and reviewing Table of Contents 0. Preface 1. Choose Your Materials Judiciously 2. Always Keep the Big Picture in Mind 3. Operate within the Proximal Zone 4. Isolate Until Mastered Before Moving On 5. Be a Proactive, Independent Thinker and Learner 6. Do Most Things Inside Your Head 7. Practice the Scientific Method in a Creative Way 8. Don’t Fret Too Much About Real-life Applicability 9. Scale Up Learning by Going Social 10. Embrace the Mathematical Experience 11. Last Few Words 12. Index
Methods of Mathematics Applied to Calculus, Probability, and Statistics
Author: Richard W. Hamming
Publisher: Courier Corporation
ISBN: 0486138879
Category : Mathematics
Languages : en
Pages : 882
Book Description
This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.
Publisher: Courier Corporation
ISBN: 0486138879
Category : Mathematics
Languages : en
Pages : 882
Book Description
This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.
Advanced Engineering Mathematics
Author: Dennis G. Zill
Publisher: Jones & Bartlett Publishers
ISBN: 1449679773
Category : Mathematics
Languages : en
Pages : 1029
Book Description
Modern and comprehensive, the new Fifth Edition of Zill's Advanced Engineering Mathematics, Fifth Edition provides an in depth overview of the many mathematical topics required for students planning a career in engineering or the sciences. A key strength of this best-selling text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fifth Edition is a full compendium of topics that are most often covered in the Engineering Mathematics course or courses, and is extremely flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. The new edition offers a reorganized project section to add clarity to course material and new content has been added throughout, including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determining speed and more. New and Key Features of the Fifth Edition: - Available with WebAssign with full integrated eBook - Two new chapters, Probability and Statistics, are available online - Updated example throughout - Projects, formerly found at the beginning of the text, are now included within the appropriate chapters. - New and updated content throughout including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determing speed and more. - The Student Companion Website, included with every new copy, includes a wealth of study aids, learning tools, projects, and essays to enhance student learning Instructor materials include: complete instructor solutions manual, PowerPoint Image Bank, and Test Bank.
Publisher: Jones & Bartlett Publishers
ISBN: 1449679773
Category : Mathematics
Languages : en
Pages : 1029
Book Description
Modern and comprehensive, the new Fifth Edition of Zill's Advanced Engineering Mathematics, Fifth Edition provides an in depth overview of the many mathematical topics required for students planning a career in engineering or the sciences. A key strength of this best-selling text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fifth Edition is a full compendium of topics that are most often covered in the Engineering Mathematics course or courses, and is extremely flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. The new edition offers a reorganized project section to add clarity to course material and new content has been added throughout, including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determining speed and more. New and Key Features of the Fifth Edition: - Available with WebAssign with full integrated eBook - Two new chapters, Probability and Statistics, are available online - Updated example throughout - Projects, formerly found at the beginning of the text, are now included within the appropriate chapters. - New and updated content throughout including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determing speed and more. - The Student Companion Website, included with every new copy, includes a wealth of study aids, learning tools, projects, and essays to enhance student learning Instructor materials include: complete instructor solutions manual, PowerPoint Image Bank, and Test Bank.
Advanced Engineering Mathematics - Book Alone
Author: Dennis G. Zill
Publisher: Jones & Bartlett Learning
ISBN: 1284033856
Category : Mathematics
Languages : en
Pages : 1029
Book Description
Modern and comprehensive, the new Fifth Edition of Zill's Advanced Engineering Mathematics, Fifth Edition provides an in depth overview of the many mathematical topics required for students planning a career in engineering or the sciences. A key strength of this best-selling text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fifth Edition is a full compendium of topics that are most often covered in the Engineering Mathematics course or courses, and is extremely flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. The new edition offers a reorganized project section to add clarity to course material and new content has been added throughout, including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determining speed and more. New and Key Features of the Fifth Edition: - Available with WebAssign with full integrated eBook - Two new chapters, Probability and Statistics, are available online - Updated example throughout - Projects, formerly found at the beginning of the text, are now included within the appropriate chapters. - New and updated content throughout including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determing speed and more. - The Student Companion Website, included with every new copy, includes a wealth of study aids, learning tools, projects, and essays to enhance student learning Instructor materials include: complete instructor solutions manual, PowerPoint Image Bank, and Test Bank.
Publisher: Jones & Bartlett Learning
ISBN: 1284033856
Category : Mathematics
Languages : en
Pages : 1029
Book Description
Modern and comprehensive, the new Fifth Edition of Zill's Advanced Engineering Mathematics, Fifth Edition provides an in depth overview of the many mathematical topics required for students planning a career in engineering or the sciences. A key strength of this best-selling text is Zill's emphasis on differential equations as mathematical models, discussing the constructs and pitfalls of each. The Fifth Edition is a full compendium of topics that are most often covered in the Engineering Mathematics course or courses, and is extremely flexible, to meet the unique needs of various course offerings ranging from ordinary differential equations to vector calculus. The new edition offers a reorganized project section to add clarity to course material and new content has been added throughout, including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determining speed and more. New and Key Features of the Fifth Edition: - Available with WebAssign with full integrated eBook - Two new chapters, Probability and Statistics, are available online - Updated example throughout - Projects, formerly found at the beginning of the text, are now included within the appropriate chapters. - New and updated content throughout including new discussions on: Autonomous Des and Direction Fields; Translation Property, Bessel Functions, LU-Factorization, Da Vinci's apparatus for determing speed and more. - The Student Companion Website, included with every new copy, includes a wealth of study aids, learning tools, projects, and essays to enhance student learning Instructor materials include: complete instructor solutions manual, PowerPoint Image Bank, and Test Bank.
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts
Author: David C. Geary
Publisher: Academic Press
ISBN: 0128133686
Category : Psychology
Languages : en
Pages : 362
Book Description
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts focuses on typical and atypical learning of complex arithmetic skills and higher-order math concepts. As part of the series Mathematical Cognition and Learning, this volume covers recent advances in the understanding of children's developing competencies with whole-number arithmetic, fractions, and rational numbers. Each chapter covers these topics from multiple perspectives, including genetic disorders, cognition, instruction, and neural networks. - Covers innovative measures and recent methodological advances in mathematical thinking and learning - Contains contributions that improve instruction and education in these domains - Informs policy aimed at increasing the level of mathematical proficiency in the general public
Publisher: Academic Press
ISBN: 0128133686
Category : Psychology
Languages : en
Pages : 362
Book Description
Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts focuses on typical and atypical learning of complex arithmetic skills and higher-order math concepts. As part of the series Mathematical Cognition and Learning, this volume covers recent advances in the understanding of children's developing competencies with whole-number arithmetic, fractions, and rational numbers. Each chapter covers these topics from multiple perspectives, including genetic disorders, cognition, instruction, and neural networks. - Covers innovative measures and recent methodological advances in mathematical thinking and learning - Contains contributions that improve instruction and education in these domains - Informs policy aimed at increasing the level of mathematical proficiency in the general public
An Introduction to Proofs with Set Theory
Author: Daniel Ashlock
Publisher: Morgan & Claypool Publishers
ISBN: 1681738805
Category : Mathematics
Languages : en
Pages : 251
Book Description
This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.
Publisher: Morgan & Claypool Publishers
ISBN: 1681738805
Category : Mathematics
Languages : en
Pages : 251
Book Description
This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of Gödel's Incompleteness Theorems.
Advanced Engineering Mathematics
Author: Dennis Zill
Publisher: Jones & Bartlett Learning
ISBN: 0763779660
Category : Mathematics
Languages : en
Pages : 1005
Book Description
Accompanying CD-ROM contains ... "a chapter on engineering statistics and probability / by N. Bali, M. Goyal, and C. Watkins."--CD-ROM label.
Publisher: Jones & Bartlett Learning
ISBN: 0763779660
Category : Mathematics
Languages : en
Pages : 1005
Book Description
Accompanying CD-ROM contains ... "a chapter on engineering statistics and probability / by N. Bali, M. Goyal, and C. Watkins."--CD-ROM label.
Mathematics Classrooms That Promote Understanding
Author: Elizabeth Fennema
Publisher: Routledge
ISBN: 1135676496
Category : Education
Languages : en
Pages : 217
Book Description
Mathematics Classrooms That Promote Understanding synthesizes the implications of research done by the National Center for Research in Mathematical Sciences on integrating two somewhat diverse bodies of scholarly inquiry: the study of teaching and the study of learning mathematics. This research was organized around content domains and/or continuing issues of education, such as equity and assessment of learning, and was guided by two common goals--defining the mathematics content of the K-12 curriculum in light of the changing mathematical needs of citizens for the 21st century, and identifying common components of classrooms that enable students to learn the redefined mathematics with understanding. To accomplish these goals, classrooms in which instruction facilitated the growth of understanding were established and/or studied. This volume reports and discusses the findings which grew out of this research, and subsequent papers and discussions among the scholars engaged in the endeavor. Section I, "Setting the Stage," focuses on three major threads: What mathematics should be taught; how we should define and increase students' understanding of that mathematics; and how learning with understanding can be facilitated for all students. Section II, "Classrooms That Promote Understanding," includes vignettes from diverse classrooms that illustrate classroom discourse, student work, and student engagement in the mathematics described in Chapter 1 as well as the mental activities described in Chapter 2. These chapters also illustrate how teachers deal with the equity concerns described in Chapter 3. Section III addresses "Developing Classrooms That Promote Understanding." The knowledge of the teaching/learning process gained from the research reported in this volume is a necessary prerequisite for implementing the revisions called for in the current reform movement. The classrooms described show that innovative reform in teaching and learning mathematics is possible. Unlike many volumes reporting research, this book is written at a level appropriate for master's degree students. Very few references are included in the chapters themselves; instead, each chapter includes a short annotated list of articles for expanded reading which provides the scholarly basis and research substantiation for this volume.
Publisher: Routledge
ISBN: 1135676496
Category : Education
Languages : en
Pages : 217
Book Description
Mathematics Classrooms That Promote Understanding synthesizes the implications of research done by the National Center for Research in Mathematical Sciences on integrating two somewhat diverse bodies of scholarly inquiry: the study of teaching and the study of learning mathematics. This research was organized around content domains and/or continuing issues of education, such as equity and assessment of learning, and was guided by two common goals--defining the mathematics content of the K-12 curriculum in light of the changing mathematical needs of citizens for the 21st century, and identifying common components of classrooms that enable students to learn the redefined mathematics with understanding. To accomplish these goals, classrooms in which instruction facilitated the growth of understanding were established and/or studied. This volume reports and discusses the findings which grew out of this research, and subsequent papers and discussions among the scholars engaged in the endeavor. Section I, "Setting the Stage," focuses on three major threads: What mathematics should be taught; how we should define and increase students' understanding of that mathematics; and how learning with understanding can be facilitated for all students. Section II, "Classrooms That Promote Understanding," includes vignettes from diverse classrooms that illustrate classroom discourse, student work, and student engagement in the mathematics described in Chapter 1 as well as the mental activities described in Chapter 2. These chapters also illustrate how teachers deal with the equity concerns described in Chapter 3. Section III addresses "Developing Classrooms That Promote Understanding." The knowledge of the teaching/learning process gained from the research reported in this volume is a necessary prerequisite for implementing the revisions called for in the current reform movement. The classrooms described show that innovative reform in teaching and learning mathematics is possible. Unlike many volumes reporting research, this book is written at a level appropriate for master's degree students. Very few references are included in the chapters themselves; instead, each chapter includes a short annotated list of articles for expanded reading which provides the scholarly basis and research substantiation for this volume.