A First Graduate Course in Abstract Algebra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A First Graduate Course in Abstract Algebra PDF full book. Access full book title A First Graduate Course in Abstract Algebra by William Jennings Wickless. Download full books in PDF and EPUB format.

A First Graduate Course in Abstract Algebra

A First Graduate Course in Abstract Algebra PDF Author: William Jennings Wickless
Publisher: CRC Press
ISBN: 0824757181
Category : Mathematics
Languages : en
Pages : 232

Book Description
Realizing the specific needs of first-year graduate students, this reference allows readers to grasp and master fundamental concepts in abstract algebra-establishing a clear understanding of basic linear algebra and number, group, and commutative ring theory and progressing to sophisticated discussions on Galois and Sylow theory, the structure of abelian groups, the Jordan canonical form, and linear transformations and their matrix representations.

A First Graduate Course in Abstract Algebra

A First Graduate Course in Abstract Algebra PDF Author: William Jennings Wickless
Publisher: CRC Press
ISBN: 0824757181
Category : Mathematics
Languages : en
Pages : 232

Book Description
Realizing the specific needs of first-year graduate students, this reference allows readers to grasp and master fundamental concepts in abstract algebra-establishing a clear understanding of basic linear algebra and number, group, and commutative ring theory and progressing to sophisticated discussions on Galois and Sylow theory, the structure of abelian groups, the Jordan canonical form, and linear transformations and their matrix representations.

A First Graduate Course in Abstract Algebra

A First Graduate Course in Abstract Algebra PDF Author: W.J. Wickless
Publisher: CRC Press
ISBN: 135198974X
Category : Mathematics
Languages : en
Pages : 247

Book Description
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.

A First Graduate Course in Abstract Algebra

A First Graduate Course in Abstract Algebra PDF Author: W.J. Wickless
Publisher: CRC Press
ISBN: 0203913663
Category : Mathematics
Languages : en
Pages : 232

Book Description
Since abstract algebra is so important to the study of advanced mathematics, it is critical that students have a firm grasp of its principles and underlying theories before moving on to further study. To accomplish this, they require a concise, accessible, user-friendly textbook that is both challenging and stimulating. A First Graduate Course in Abstract Algebra is just such a textbook. Divided into two sections, this book covers both the standard topics (groups, modules, rings, and vector spaces) associated with abstract algebra and more advanced topics such as Galois fields, noncommutative rings, group extensions, and Abelian groups. The author includes review material where needed instead of in a single chapter, giving convenient access with minimal page turning. He also provides ample examples, exercises, and problem sets to reinforce the material. This book illustrates the theory of finitely generated modules over principal ideal domains, discusses tensor products, and demonstrates the development of determinants. It also covers Sylow theory and Jordan canonical form. A First Graduate Course in Abstract Algebra is ideal for a two-semester course, providing enough examples, problems, and exercises for a deep understanding. Each of the final three chapters is logically independent and can be covered in any order, perfect for a customized syllabus.

Algebra

Algebra PDF Author: I. Martin Isaacs
Publisher: American Mathematical Soc.
ISBN: 0821847996
Category : Mathematics
Languages : en
Pages : 531

Book Description
as a student." --Book Jacket.

A First Course in Abstract Algebra

A First Course in Abstract Algebra PDF Author: Hiram Paley
Publisher:
ISBN:
Category : Algebra, Abstract
Languages : en
Pages : 334

Book Description


A Book of Abstract Algebra

A Book of Abstract Algebra PDF Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486474178
Category : Mathematics
Languages : en
Pages : 402

Book Description
Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.

Undergraduate Algebra

Undergraduate Algebra PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380

Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group

Abstract Algebra

Abstract Algebra PDF Author: Dan Saracino
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320

Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.

A Course in Algebra

A Course in Algebra PDF Author: Ä–rnest Borisovich Vinberg
Publisher: American Mathematical Soc.
ISBN: 9780821834138
Category : Mathematics
Languages : en
Pages : 532

Book Description
Presents modern algebra. This book includes such topics as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. It is suitable for independent study for advanced undergraduates and graduate students.

Graduate Algebra

Graduate Algebra PDF Author: Louis Halle Rowen
Publisher: American Mathematical Soc.
ISBN: 9780821883976
Category : Mathematics
Languages : en
Pages : 464

Book Description
This book is an expanded text for a graduate course in commutative algebra, focusing on the algebraic underpinnings of algebraic geometry and of number theory. Accordingly, the theory of affine algebras is featured, treated both directly and via the theory of Noetherian and Artinian modules, and the theory of graded algebras is included to provide the foundation for projective varieties. Major topics include the theory of modules over a principal ideal domain, and its applicationsto matrix theory (including the Jordan decomposition), the Galois theory of field extensions, transcendence degree, the prime spectrum of an algebra, localization, and the classical theory of Noetherian and Artinian rings. Later chapters include some algebraic theory of elliptic curves (featuring theMordell-Weil theorem) and valuation theory, including local fields. One feature of the book is an extension of the text through a series of appendices. This permits the inclusion of more advanced material, such as transcendental field extensions, the discriminant and resultant, the theory of Dedekind domains, and basic theorems of rings of algebraic integers. An extended appendix on derivations includes the Jacobian conjecture and Makar-Limanov's theory of locally nilpotent derivations. Grobnerbases can be found in another appendix. Exercises provide a further extension of the text. The book can be used both as a textbook and as a reference source.