Author: David Blaschke
Publisher: Springer Science & Business Media
ISBN: 140203430X
Category : Science
Languages : en
Pages : 427
Book Description
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
Superdense QCD Matter and Compact Stars
Author: David Blaschke
Publisher: Springer Science & Business Media
ISBN: 140203430X
Category : Science
Languages : en
Pages : 427
Book Description
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
Publisher: Springer Science & Business Media
ISBN: 140203430X
Category : Science
Languages : en
Pages : 427
Book Description
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
The Deconfinement Transition of QCD
Author: Claudia Ratti
Publisher: Springer Nature
ISBN: 3030672352
Category : Science
Languages : en
Pages : 224
Book Description
In the last few years, numerical simulations of QCD on the lattice have reached a new level of accuracy. A wide range of thermodynamic quantities is now available in the continuum limit and for physical quark masses. This allows a comparison with measurements from heavy ion collisions for the first time. Furthermore, calculations of dynamical quantities are also becoming available. The combined effort from first principles and experiment allows to gain an unprecedented understanding of the properties of quark-gluon plasma. This concise text, geared towards postgraduate students and newcomers to the field, carefully introduces and reviews the state-of-the-art techniques and results from lattice simulations and connects them to the experimental information from RHIC and the LHC.
Publisher: Springer Nature
ISBN: 3030672352
Category : Science
Languages : en
Pages : 224
Book Description
In the last few years, numerical simulations of QCD on the lattice have reached a new level of accuracy. A wide range of thermodynamic quantities is now available in the continuum limit and for physical quark masses. This allows a comparison with measurements from heavy ion collisions for the first time. Furthermore, calculations of dynamical quantities are also becoming available. The combined effort from first principles and experiment allows to gain an unprecedented understanding of the properties of quark-gluon plasma. This concise text, geared towards postgraduate students and newcomers to the field, carefully introduces and reviews the state-of-the-art techniques and results from lattice simulations and connects them to the experimental information from RHIC and the LHC.
Properties of QCD Matter at High Baryon Density
Author: Xiaofeng Luo
Publisher: Springer Nature
ISBN: 9811944415
Category : Science
Languages : en
Pages : 294
Book Description
This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.
Publisher: Springer Nature
ISBN: 9811944415
Category : Science
Languages : en
Pages : 294
Book Description
This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.
Dirac Spectra in Dense QCD
Author: Takuya Kanazawa
Publisher: Springer Science & Business Media
ISBN: 4431541659
Category : Science
Languages : en
Pages : 145
Book Description
Gaining a theoretical understanding of the properties of ultra-relativistic dense matter has been one of the most important and challenging goals in quantum chromodynamics (QCD). In this thesis, the author analyzes dense quark matter in QCD with gauge group SU(2) using low-energy effective theoretical techniques and elucidates a novel connection between statistical properties of the Dirac operator spectrum at high baryon chemical potential and a special class of random matrix theories. This work can be viewed as an extension of a similar correspondence between QCD and matrix models which was previously known only for infinitesimal chemical potentials. In future numerical simulations of dense matter the analytical results reported here are expected to serve as a useful tool to extract physical observables such as the BCS gap from numerical data on the Dirac spectrum.
Publisher: Springer Science & Business Media
ISBN: 4431541659
Category : Science
Languages : en
Pages : 145
Book Description
Gaining a theoretical understanding of the properties of ultra-relativistic dense matter has been one of the most important and challenging goals in quantum chromodynamics (QCD). In this thesis, the author analyzes dense quark matter in QCD with gauge group SU(2) using low-energy effective theoretical techniques and elucidates a novel connection between statistical properties of the Dirac operator spectrum at high baryon chemical potential and a special class of random matrix theories. This work can be viewed as an extension of a similar correspondence between QCD and matrix models which was previously known only for infinitesimal chemical potentials. In future numerical simulations of dense matter the analytical results reported here are expected to serve as a useful tool to extract physical observables such as the BCS gap from numerical data on the Dirac spectrum.
The Large N Expansion in Quantum Field Theory and Statistical Physics
Author: E. Brzin
Publisher: World Scientific
ISBN: 9789810204563
Category : Science
Languages : en
Pages : 1154
Book Description
This book contains an edited comprehensive collection of reprints on the subject of the large N limit as applied to a wide spectrum of problems in quantum field theory and statistical mechanics. The topics include (1) Spin Systems; (2) Large N Limit of Gauge Theories; (3) Two-Dimensional QCD; (4) Exact Results on Planar Perturbation Series and the Nature of the 1/N Series; (5) Schwinger-Dyson Equations Approach; (6) QCD Phenomenological Lagrangians and the Large N Limit; (7) Other Approaches to Large N: Eguchi-Kawai Model, Collective Fields and Numerical Methods; (8) Matrix Models; (9) Two-Dimensional Gravity and String Theory.
Publisher: World Scientific
ISBN: 9789810204563
Category : Science
Languages : en
Pages : 1154
Book Description
This book contains an edited comprehensive collection of reprints on the subject of the large N limit as applied to a wide spectrum of problems in quantum field theory and statistical mechanics. The topics include (1) Spin Systems; (2) Large N Limit of Gauge Theories; (3) Two-Dimensional QCD; (4) Exact Results on Planar Perturbation Series and the Nature of the 1/N Series; (5) Schwinger-Dyson Equations Approach; (6) QCD Phenomenological Lagrangians and the Large N Limit; (7) Other Approaches to Large N: Eguchi-Kawai Model, Collective Fields and Numerical Methods; (8) Matrix Models; (9) Two-Dimensional Gravity and String Theory.
Understanding Deconfinement In Qcd - Proceedings Of The International Workshop
Author: David Blaschke
Publisher: World Scientific
ISBN: 9814543381
Category : Science
Languages : en
Pages : 368
Book Description
This volume summarizes our contemporary understanding of the deconfinement transition in QCD at finite temperature and chemical potential. Questions as to whether a quark-gluon plasma exists in the interior of dense astrophysical objects or which bound-state signals have to be studied in order to unambiguously detect the QCD phase transition(s) in future heavy-ion collision programmes at RHIC and LHC are addressed. Progress in answering these questions requires a fusion of lattice QCD with other nonperturbative approaches and low-energy effective models for QCD. Experts in these fields present in the book their methods and their results in understanding the deconfinement phenomenon.
Publisher: World Scientific
ISBN: 9814543381
Category : Science
Languages : en
Pages : 368
Book Description
This volume summarizes our contemporary understanding of the deconfinement transition in QCD at finite temperature and chemical potential. Questions as to whether a quark-gluon plasma exists in the interior of dense astrophysical objects or which bound-state signals have to be studied in order to unambiguously detect the QCD phase transition(s) in future heavy-ion collision programmes at RHIC and LHC are addressed. Progress in answering these questions requires a fusion of lattice QCD with other nonperturbative approaches and low-energy effective models for QCD. Experts in these fields present in the book their methods and their results in understanding the deconfinement phenomenon.
International Symposium on Quantum Chromodynamics and Color Confinement, CONFINEMENT 2000
Author: Hideo Suganuma
Publisher: World Scientific
ISBN: 9789810246631
Category : Science
Languages : en
Pages : 428
Book Description
The quark confinement mechanism is one of the most difficult problems in particle physics, and is listed as the 7 difficult mathematical problems of the new millennium. The first person who first solves this problem will be awarded a prize of US$ 1 Million by Cray Mathematics Institute. This volume is useful for the systematic understanding of quark confinement and nonperturbative aspects of quantum chromodynamics (QCD) from the wide viewpoints of mathematical physics, lattice QCD physics and quark-hadron physics. It covers the current studies of nonperturbative QCD: quark confinement mechanism; topologies in QCD (instantons, monopoles and vortices); BRS quartet mechanism for color confinement; lattice QCD calculations for quarks, gluons and hadrons; dynamical chiral symmetry breaking and hadrons.
Publisher: World Scientific
ISBN: 9789810246631
Category : Science
Languages : en
Pages : 428
Book Description
The quark confinement mechanism is one of the most difficult problems in particle physics, and is listed as the 7 difficult mathematical problems of the new millennium. The first person who first solves this problem will be awarded a prize of US$ 1 Million by Cray Mathematics Institute. This volume is useful for the systematic understanding of quark confinement and nonperturbative aspects of quantum chromodynamics (QCD) from the wide viewpoints of mathematical physics, lattice QCD physics and quark-hadron physics. It covers the current studies of nonperturbative QCD: quark confinement mechanism; topologies in QCD (instantons, monopoles and vortices); BRS quartet mechanism for color confinement; lattice QCD calculations for quarks, gluons and hadrons; dynamical chiral symmetry breaking and hadrons.
Compact Stars
Author: Norman K. Glendenning
Publisher: Springer Science & Business Media
ISBN: 1468404911
Category : Science
Languages : en
Pages : 402
Book Description
A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Publisher: Springer Science & Business Media
ISBN: 1468404911
Category : Science
Languages : en
Pages : 402
Book Description
A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Uncertainty quantification in nuclear physics
Author: Maria Piarulli
Publisher: Frontiers Media SA
ISBN: 2832532098
Category : Science
Languages : en
Pages : 233
Book Description
Publisher: Frontiers Media SA
ISBN: 2832532098
Category : Science
Languages : en
Pages : 233
Book Description
Perturbative Aspects of the Deconfinement Transition
Author: Urko Reinosa
Publisher: Springer Nature
ISBN: 3031113756
Category : Science
Languages : en
Pages : 280
Book Description
This book offers an original view of the color confinement/deconfinement transition that occurs in non-abelian gauge theories at high temperature and/or densities. It is grounded on the fact that the standard Faddeev-Popov gauge-fixing procedure in the Landau gauge is incomplete. The proper analysis of the low energy properties of non-abelian theories in this gauge requires, therefore, the extension of the gauge-fixing procedure, beyond the Faddeev-Popov recipe. The author reviews various applications of one such extension, based on the Curci-Ferrari model, with a special focus on the confinement/deconfinement transition, first in the case of pure Yang-Mills theory, and then, in a formal regime of Quantum Chromodynamics where all quarks are considered heavy. He shows that most qualitative aspects and also many quantitative features of the deconfinement transition can be accounted for within the model, with only one additional parameter. Moreover, these features emerge in a systematic and controlled perturbative expansion, as opposed to what would happen in a perturbative expansion within the Faddeev-Popov model. The book is also intended as a thorough and pedagogical introduction to background field gauge techniques at finite temperature and/or density. In particular, it offers a new and promising view on the way these techniques might be applied at finite temperature. The material aims at graduate students or researchers who wish to deepen their understanding of the confinement/deconfinement transition from an analytical perspective. Basic knowledge of gauge theories at finite temperature is required, although the text is designed in a self-contained manner, with most concepts and tools introduced when needed. At the end of each chapter, a series of exercises is proposed to master the subject.
Publisher: Springer Nature
ISBN: 3031113756
Category : Science
Languages : en
Pages : 280
Book Description
This book offers an original view of the color confinement/deconfinement transition that occurs in non-abelian gauge theories at high temperature and/or densities. It is grounded on the fact that the standard Faddeev-Popov gauge-fixing procedure in the Landau gauge is incomplete. The proper analysis of the low energy properties of non-abelian theories in this gauge requires, therefore, the extension of the gauge-fixing procedure, beyond the Faddeev-Popov recipe. The author reviews various applications of one such extension, based on the Curci-Ferrari model, with a special focus on the confinement/deconfinement transition, first in the case of pure Yang-Mills theory, and then, in a formal regime of Quantum Chromodynamics where all quarks are considered heavy. He shows that most qualitative aspects and also many quantitative features of the deconfinement transition can be accounted for within the model, with only one additional parameter. Moreover, these features emerge in a systematic and controlled perturbative expansion, as opposed to what would happen in a perturbative expansion within the Faddeev-Popov model. The book is also intended as a thorough and pedagogical introduction to background field gauge techniques at finite temperature and/or density. In particular, it offers a new and promising view on the way these techniques might be applied at finite temperature. The material aims at graduate students or researchers who wish to deepen their understanding of the confinement/deconfinement transition from an analytical perspective. Basic knowledge of gauge theories at finite temperature is required, although the text is designed in a self-contained manner, with most concepts and tools introduced when needed. At the end of each chapter, a series of exercises is proposed to master the subject.