Author: Avner Friedman
Publisher: Springer Science & Business Media
ISBN: 1461383579
Category : Science
Languages : en
Pages : 210
Book Description
This IMA Volume in Mathematics and its Applications VARIATIONAL AND FREE BOUNDARY PROBLEMS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries. " The aim of the workshop was to highlight new methods, directions and problems in variational and free boundary theory, with a concentration on novel applications of variational methods to applied problems. We thank R. Fosdick, M. E. Gurtin, W. -M. Ni and L. A. Peletier for organizing the year-long program and, especially, J. Sprock for co-organizing the meeting and co-editing these proceedings. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr. PREFACE In a free boundary one seeks to find a solution u to a partial differential equation in a domain, a part r of its boundary of which is unknown. Thus both u and r must be determined. In addition to the standard boundary conditions on the un known domain, an additional condition must be prescribed on the free boundary. A classical example is the Stefan problem of melting of ice; here the temperature sat isfies the heat equation in the water region, and yet this region itself (or rather the ice-water interface) is unknown and must be determined together with the tempera ture within the water. Some free boundary problems lend themselves to variational formulation.
Variational and Free Boundary Problems
Author: Avner Friedman
Publisher: Springer Science & Business Media
ISBN: 1461383579
Category : Science
Languages : en
Pages : 210
Book Description
This IMA Volume in Mathematics and its Applications VARIATIONAL AND FREE BOUNDARY PROBLEMS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries. " The aim of the workshop was to highlight new methods, directions and problems in variational and free boundary theory, with a concentration on novel applications of variational methods to applied problems. We thank R. Fosdick, M. E. Gurtin, W. -M. Ni and L. A. Peletier for organizing the year-long program and, especially, J. Sprock for co-organizing the meeting and co-editing these proceedings. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr. PREFACE In a free boundary one seeks to find a solution u to a partial differential equation in a domain, a part r of its boundary of which is unknown. Thus both u and r must be determined. In addition to the standard boundary conditions on the un known domain, an additional condition must be prescribed on the free boundary. A classical example is the Stefan problem of melting of ice; here the temperature sat isfies the heat equation in the water region, and yet this region itself (or rather the ice-water interface) is unknown and must be determined together with the tempera ture within the water. Some free boundary problems lend themselves to variational formulation.
Publisher: Springer Science & Business Media
ISBN: 1461383579
Category : Science
Languages : en
Pages : 210
Book Description
This IMA Volume in Mathematics and its Applications VARIATIONAL AND FREE BOUNDARY PROBLEMS is based on the proceedings of a workshop which was an integral part of the 1990- 91 IMA program on "Phase Transitions and Free Boundaries. " The aim of the workshop was to highlight new methods, directions and problems in variational and free boundary theory, with a concentration on novel applications of variational methods to applied problems. We thank R. Fosdick, M. E. Gurtin, W. -M. Ni and L. A. Peletier for organizing the year-long program and, especially, J. Sprock for co-organizing the meeting and co-editing these proceedings. We also take this opportunity to thank the National Science Foundation whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr. PREFACE In a free boundary one seeks to find a solution u to a partial differential equation in a domain, a part r of its boundary of which is unknown. Thus both u and r must be determined. In addition to the standard boundary conditions on the un known domain, an additional condition must be prescribed on the free boundary. A classical example is the Stefan problem of melting of ice; here the temperature sat isfies the heat equation in the water region, and yet this region itself (or rather the ice-water interface) is unknown and must be determined together with the tempera ture within the water. Some free boundary problems lend themselves to variational formulation.
Free Boundary Problems in Fluid Flow with Applications
Author: J M Chadam
Publisher: CRC Press
ISBN: 9780582215672
Category : Mathematics
Languages : en
Pages : 278
Book Description
This is the third of three volumes containing the proceedings of the International Colloquium 'Free Boundary problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main part of this volume studies the flow of fluids, an area which has led to many of the classical free boundary problems. The first two sections contain the papers on various problems in fluid mechanics. The types of problems vary fromthe collision of two jets to the growth of a sand wave. In the next two sections porous flow is considered. This has important practical applications in fields such as petroleum engineering and groundwater pollution. Some new and interesting free boundary problems in geology and engineering are treated in the final section.
Publisher: CRC Press
ISBN: 9780582215672
Category : Mathematics
Languages : en
Pages : 278
Book Description
This is the third of three volumes containing the proceedings of the International Colloquium 'Free Boundary problems: Theory and Applications', held in Montreal from June 13 to June 22, 1990. The main part of this volume studies the flow of fluids, an area which has led to many of the classical free boundary problems. The first two sections contain the papers on various problems in fluid mechanics. The types of problems vary fromthe collision of two jets to the growth of a sand wave. In the next two sections porous flow is considered. This has important practical applications in fields such as petroleum engineering and groundwater pollution. Some new and interesting free boundary problems in geology and engineering are treated in the final section.
Comparison Methods and Stability Theory
Author: Xinzhi Liu
Publisher: CRC Press
ISBN: 100015369X
Category : Mathematics
Languages : en
Pages : 390
Book Description
This work is based on the International Symposium on Comparison Methods and Stability Theory held in Waterloo, Ontario, Canada. It presents advances in comparison methods and stability theory in a wide range of nonlinear problems, covering a variety of topics such as ordinary, functional, impulsive, integro-, partial, and uncertain differential equations.
Publisher: CRC Press
ISBN: 100015369X
Category : Mathematics
Languages : en
Pages : 390
Book Description
This work is based on the International Symposium on Comparison Methods and Stability Theory held in Waterloo, Ontario, Canada. It presents advances in comparison methods and stability theory in a wide range of nonlinear problems, covering a variety of topics such as ordinary, functional, impulsive, integro-, partial, and uncertain differential equations.
Free Boundary Problems
Author: Isabel Narra Figueiredo
Publisher: Springer Science & Business Media
ISBN: 3764377194
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.
Publisher: Springer Science & Business Media
ISBN: 3764377194
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.
Nuclear Science Abstracts
New Directions in Mathematical Fluid Mechanics
Author: Andrei V. Fursikov
Publisher: Springer Science & Business Media
ISBN: 3034601522
Category : Science
Languages : en
Pages : 435
Book Description
On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.
Publisher: Springer Science & Business Media
ISBN: 3034601522
Category : Science
Languages : en
Pages : 435
Book Description
On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.
Mathematics for Nonlinear Phenomena — Analysis and Computation
Author: Yasunori Maekawa
Publisher: Springer
ISBN: 3319667645
Category : Mathematics
Languages : en
Pages : 335
Book Description
This volume covers some of the most seminal research in the areas of mathematical analysis and numerical computation for nonlinear phenomena. Collected from the international conference held in honor of Professor Yoshikazu Giga’s 60th birthday, the featured research papers and survey articles discuss partial differential equations related to fluid mechanics, electromagnetism, surface diffusion, and evolving interfaces. Specific focus is placed on topics such as the solvability of the Navier-Stokes equations and the regularity, stability, and symmetry of their solutions, analysis of a living fluid, stochastic effects and numerics for Maxwell’s equations, nonlinear heat equations in critical spaces, viscosity solutions describing various kinds of interfaces, numerics for evolving interfaces, and a hyperbolic obstacle problem. Also included in this volume are an introduction of Yoshikazu Giga’s extensive academic career and a long list of his published work. Students and researchers in mathematical analysis and computation will find interest in this volume on theoretical study for nonlinear phenomena.
Publisher: Springer
ISBN: 3319667645
Category : Mathematics
Languages : en
Pages : 335
Book Description
This volume covers some of the most seminal research in the areas of mathematical analysis and numerical computation for nonlinear phenomena. Collected from the international conference held in honor of Professor Yoshikazu Giga’s 60th birthday, the featured research papers and survey articles discuss partial differential equations related to fluid mechanics, electromagnetism, surface diffusion, and evolving interfaces. Specific focus is placed on topics such as the solvability of the Navier-Stokes equations and the regularity, stability, and symmetry of their solutions, analysis of a living fluid, stochastic effects and numerics for Maxwell’s equations, nonlinear heat equations in critical spaces, viscosity solutions describing various kinds of interfaces, numerics for evolving interfaces, and a hyperbolic obstacle problem. Also included in this volume are an introduction of Yoshikazu Giga’s extensive academic career and a long list of his published work. Students and researchers in mathematical analysis and computation will find interest in this volume on theoretical study for nonlinear phenomena.
Scientific and Technical Aerospace Reports
Mean Field Theories and Dual Variation - Mathematical Structures of the Mesoscopic Model
Author: Takashi Suzuki
Publisher: Springer
ISBN: 9462391548
Category : Mathematics
Languages : en
Pages : 450
Book Description
Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics. spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature. The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.
Publisher: Springer
ISBN: 9462391548
Category : Mathematics
Languages : en
Pages : 450
Book Description
Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics. spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature. The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.