A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer PDF full book. Access full book title A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer by Stephen Lincoln Lyons. Download full books in PDF and EPUB format.

A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer

A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer PDF Author: Stephen Lincoln Lyons
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 670

Book Description
A direct numerical simulation of a fully developed turbulent channel flow with passive heat transfer is performed. The time-dependent three-dimensional Navier-Stokes equations and advection-diffusion equation are solved numerically using a pseudospectral technique with 1,064,960 grid points in physical space (128 x 65 x 128 in x, y, z). No subgrid scale model is employed since all essential turbulence scales are resolved. The Reynolds number is 2262, based on the half channel height and bulk velocity, and the Prandtl number is 1. The Nusselt number is predicted to be 25.36. A large number of one-point turbulence statistics are computed and compared with existing experimental data taken at similar Reynolds and Nusselt numbers. Agreement with the existing experimental data is excellent except for some discrepancies in the near wall region, y$sp+$ $

A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer

A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Passive Heat Transfer PDF Author: Stephen Lincoln Lyons
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 670

Book Description
A direct numerical simulation of a fully developed turbulent channel flow with passive heat transfer is performed. The time-dependent three-dimensional Navier-Stokes equations and advection-diffusion equation are solved numerically using a pseudospectral technique with 1,064,960 grid points in physical space (128 x 65 x 128 in x, y, z). No subgrid scale model is employed since all essential turbulence scales are resolved. The Reynolds number is 2262, based on the half channel height and bulk velocity, and the Prandtl number is 1. The Nusselt number is predicted to be 25.36. A large number of one-point turbulence statistics are computed and compared with existing experimental data taken at similar Reynolds and Nusselt numbers. Agreement with the existing experimental data is excellent except for some discrepancies in the near wall region, y$sp+$ $

A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Spanwise Wall Oscillation

A Direct Numerical Simulation of Fully Developed Turbulent Channel Flow with Spanwise Wall Oscillation PDF Author: Dongmei Zhou
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages :

Book Description


Turbulent Shear Flows 8

Turbulent Shear Flows 8 PDF Author: Franz Durst
Publisher: Springer Science & Business Media
ISBN: 3642776744
Category : Science
Languages : en
Pages : 419

Book Description
This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.

Large Eddy Simulation of Compressible Turbulent Pipe Flow with Heat Transfer

Large Eddy Simulation of Compressible Turbulent Pipe Flow with Heat Transfer PDF Author: Xiaofeng Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 306

Book Description
A compressible finite volume formulation for large eddy simulation (LES) of turbulent channel flows was extended to solve the turbulent flows in pipes and annular passages. A general finite volume scheme was developed based on conservation equations in Cartesian coordinates with non-Cartesian control volumes. A dual-time stepping approach with time derivative preconditioning was employed and time marching was done with an implicit lower-upper-symmetric-Gauss-Seidel (LU-SGS) scheme. The small scale motions were modeled by a dynamic subgrid-scale (SGS) model. The code was developed in a multiblock framework and parallelized using the message passing interface (MPI). The finite volume LES formulation was validated by simulating the isothermal fully developed turbulent pipe and annular flows. The results were compared to experimental data and direct numerical simulation (DNS) results. The LES formulation was further validated by the simulation of turbulent pipe flows with low heat transfer and comparisons with passive scalar DNS results. Finally, buoyancy forces were added into the LES formulation to simulate mixed convection in a vertical pipe with constant high wall heat fluxes leading to significant property variations. Step-periodic boundary conditions were studied and implemented. The results were validated by comparing with experimental results. Heating effects and flow laminarization were studied. Excellent agreement with DNS and experimental results were obtained for isothermal turbulent pipe and annular flows. The mean temperature profile for the turbulent pipe flow with low heat transfer matched very well with the DNS passive scalar results. Good matches to constant property correlations were also achieved for friction coefficients and Nusselt numbers. For the mixed convection in a vertical pipe, good agreement with the experimental mean streamwise velocity and temperature profiles was obtained. High heating tended to suppress the turbulent intensities and attenuate the turbulent kinetic energy. The thinner viscous layer led to a larger Nusselt numbers which indicated a higher heat transfer rate. Laminarization phenomena were observed along with large overprediction of friction coefficients and underprediction of Nusselt numbers when comparing to fully turbulent property variation correlations.

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Square Duct at Low Reynolds Number

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Square Duct at Low Reynolds Number PDF Author: M. Piller
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
In this paper, we present the results from Direct Numerical Simulations of turbulent, incompressible flow through a square duct, with an imposed temperature difference between two opposite walls, while the other two walls are assumed perfectly insulated. The mean flow is sustained by an imposed, mean pressure gradient. The most interesting feature, characterizing this geometry, consists in the presence of turbulence-sustained mean secondary motions in the cross-flow plane. In this study, we focus on weak turbulence, in that the Reynolds number, based on bulk velocity and hydraulic diameter, is about 4450. Our results indicate that secondary motions do not affect dramatically the global parameters, like friction factor and Nusselt number, in comparison with the plane-channel flow. This issue is investigated by looking at the distribution of the various contributions to the total heat flux, with particular attention to the mean convective term, which does not appear in the plane channel flow.

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Concentric Annular Pipe

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Concentric Annular Pipe PDF Author: Edris Bagheri
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
In this thesis, the effects of computational domain size and radius ratio on fully developed turbulent flow and heat transfer in a concentric annular pipe are investigated using direct numerical simulation (DNS). To perform DNS, a new parallel computer code based on the pseudo-spectral method was developed using the FORTRAN 90/95 programing languages and the message passing interface (MPI) libraries. In order to study the effects of computational domain size on the turbulence statistics, twelve test cases of different domain sizes are compared. The effects of radius ratio are investigated through a systematic study based on four radius ratios of a concentric pipe. The characteristics of the velocity and temperature fields are examined at two Reynolds number of Re_(D_h ) =8900$ and 17700. The radius ratio affects the interaction of two boundary layers of the concentric annular pipe and has a significant impact on the turbulent flow structures and dynamics. The characteristics of the flow and temperature fields are investigated in both physical and spectral spaces, which include the analyses of the first- and second-order statistical moments, budget balance of the transport equation of Reynolds stresses, two-point correlation coefficients, and premultiplied spectra of velocity, vorticity, and temperature fluctuations. It is observed that the scales and dynamics of turbulence structures vary with the radius ratio as well as the surface curvature of the concave and convex walls. The characteristic length scales of the turbulence structures are identified through a spectral analysis.

A Selection of Test Cases for the Validation of Large-eddy Simulations of Turbulent Flows

A Selection of Test Cases for the Validation of Large-eddy Simulations of Turbulent Flows PDF Author:
Publisher:
ISBN: 9789283610724
Category : Computational fluid dynamics
Languages : en
Pages : 198

Book Description


Convective Heat and Mass Transfer

Convective Heat and Mass Transfer PDF Author: S. Mostafa Ghiaasiaan
Publisher: CRC Press
ISBN: 1351112732
Category : Science
Languages : en
Pages : 788

Book Description
Convective Heat and Mass Transfer, Second Edition, is ideal for the graduate level study of convection heat and mass transfer, with coverage of well-established theory and practice as well as trending topics, such as nanoscale heat transfer and CFD. It is appropriate for both Mechanical and Chemical Engineering courses/modules.

Engineering Turbulence Modelling and Experiments 5

Engineering Turbulence Modelling and Experiments 5 PDF Author: W. Rodi
Publisher: Elsevier
ISBN: 008053094X
Category : Mathematics
Languages : en
Pages : 1029

Book Description
Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Square Duct Roughened with Transverse Or V-shaped Ribs

Direct Numerical Simulation of Turbulent Flow and Heat Transfer in a Square Duct Roughened with Transverse Or V-shaped Ribs PDF Author: Seyyed Vahid Mahmoodi Jezeh
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This integrated thesis documents a series of complementary numerical investigations aimed at an improved understanding of turbulent flows and heat transfer in a square duct with ribs of different shapes mounted on one wall. Direct numerical simulation (DNS) is used to accurately resolve the spatial and temporal scales of the simulated flows. The first DNS investigates the turbulent flow in a ribbed square duct of different blockage ratios. The results are compared with those of a smooth duct flow. It is observed that an augmentation of the blockage ratio concurrently generates stronger turbulent secondary flow motions, which drastically alter the turbulent transport processes between the sidewall and duct center, giving rise to high-degrees of non-equilibrium states. The dynamics of coherent structures are studied by examining characteristics of the instantaneous velocity field, swirling strength, spatial two-point auto-correlations, and velocity spectra. The impact of the blockage ratio on the turbulent heat transfer is investigated in the second numerical study. The results show that owing to the existence of the ribs and confinement of the duct, organized secondary flows appear as large streamwise-elongated vortices, which have profound influences on the transport of momentum and thermal energy. This study also shows that the spatial distribution and magnitude of the drag and heat transfer coefficients are highly sensitive to the rib height. The final study focuses on a comparison of highly-disturbed turbulent flows in a square duct with inclined and V-shaped ribs mounted on one wall. The turbulence field is highly sensitive to not only the rib geometry but also the boundary layers developed over the side and top walls. Owing to the difference in the pattern of the cross-stream secondary flow motions of these two ribbed duct cases, the flow physics in the inclined rib case is significantly different from the V-shaped rib case. It is found that near the leeward and windward faces of the ribs, the mean inclination angle of turbulence structures in the V-shaped rib case is greater than that of the inclined rib case, which subsequently enhances momentum transport between the ribbed bottom wall and the smooth top wall.