A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors PDF full book. Access full book title A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors by Ingrid Einhorn. Download full books in PDF and EPUB format.

A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors

A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors PDF Author: Ingrid Einhorn
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Book Description


A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors

A Deterministic Particle Method for the Simulation of the Boltzmann Transport Equation of Semiconductors PDF Author: Ingrid Einhorn
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Book Description


Deterministic Particle Simulations of the Boltzmann Transport Equations of Semiconductors

Deterministic Particle Simulations of the Boltzmann Transport Equations of Semiconductors PDF Author: B. Niclot
Publisher:
ISBN:
Category :
Languages : en
Pages : 58

Book Description


Multigroup Equations for the Description of the Particle Transport in Semiconductors

Multigroup Equations for the Description of the Particle Transport in Semiconductors PDF Author: Martin Galler
Publisher: World Scientific
ISBN: 9812703381
Category : Technology & Engineering
Languages : en
Pages : 250

Book Description
Deterministic simulation of the particle transport in semiconductor devices is an interesting alternative to the common Monte Carlo approach. In this book, a state-of-the-art technique called the multigroup approach is presented and applied to a variety of transport problems in bulk semiconductors and semiconductor devices. High-field effects as well as hot-phonon phenomena in polar semiconductors are studied in detail. The mathematical properties of the presented numerical method are studied, and the method is applied to simulating the transport of a two-dimensional electron gas formed at a semiconductor heterostructure. Concerning semiconductor device simulation, several diodes and transistors fabricated of silicon and gallium arsenide are investigated. For all of these simulations, the numerical techniques employed are discussed in detail. This unique study of the application of direct methods for semiconductor device simulation provides the interested reader with an indispensable reference on this growing research area.

Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices

Mathematical Modelling and Simulation of Electrical Circuits and Semiconductor Devices PDF Author: Randolph Bank
Publisher: Birkhäuser
ISBN: 3034885288
Category : Mathematics
Languages : en
Pages : 314

Book Description
Progress in today's high-technology industries is strongly associated with the development of new mathematical tools. A typical illustration of this partnership is the mathematical modelling and numerical simulation of electric circuits and semiconductor devices. At the second Oberwolfach conference devoted to this important and timely field, scientists from around the world, mainly applied mathematicians and electrical engineers from industry and universities, presented their new results. Their contributions, forming the body of this work, cover electric circuit simulation, device simulation and process simulation. Discussions on experiences with standard software packages and improvements of such packages are included. In the semiconductor area special lectures were given on new modelling approaches, numerical techniques and existence and uniqueness results. In this connection, mention is made, for example, of mixed finite element methods, an extension of the Baliga-Patankar technique for a three dimensional simulation, and the connection between semiconductor equations and the Boltzmann equations.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures PDF Author: Massimo V. Fischetti
Publisher: Springer
ISBN: 3319011014
Category : Technology & Engineering
Languages : en
Pages : 481

Book Description
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulation

Computational Aspects of VLSI Design with an Emphasis on Semiconductor Device Simulation PDF Author: Randolph E. Bank
Publisher: American Mathematical Soc.
ISBN: 9780821896938
Category : Technology & Engineering
Languages : en
Pages : 206

Book Description
Numerical simulation is rapidly becoming an important part of the VLSI design process, allowing the engineer to test, evaluate, and optimize various aspects of chip design without resorting to the costly and time-consuming process of fabricating prototypes. This procedure not only accelerates the design process, but also improves the end product, since it is economically feasible to numerically simulate many more options than might otherwise be considered. With the enhanced computing power of today's computers, more sophisticated models are now being developed. This volume contains the proceedings of the AMS-SIAM Summer Seminar on Computational Aspects of VLSI Design, held at the Institute for Mathematics and Its Applications at the University of Minnesota, in the spring of 1987. The seminar featured presentations by some of the top experts working in this area. Their contributions to this volume form an excellent overview of the mathematical and computational problems arising in this area.

Computing Methods in Applied Sciences and Engineering

Computing Methods in Applied Sciences and Engineering PDF Author: R. Glowinski
Publisher: SIAM
ISBN: 9780898712643
Category : Science
Languages : en
Pages : 464

Book Description
"Proceedings of the Ninth International Conference on Computing Methods in Applied Sciences and Engineering, Paris, France, January 29-February 2, 1990"--T.p. verso.

Simulation of Semiconductor Devices and Processes

Simulation of Semiconductor Devices and Processes PDF Author: Heiner Ryssel
Publisher: Springer Science & Business Media
ISBN: 3709166195
Category : Computers
Languages : en
Pages : 515

Book Description
SISDEP ’95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.

Analysis of Charge Transport

Analysis of Charge Transport PDF Author: Joseph W. Jerome
Publisher: Springer Science & Business Media
ISBN: 3642799876
Category : Mathematics
Languages : en
Pages : 177

Book Description
This book addresses the mathematical aspects of semiconductor modeling, with particular attention focused on the drift-diffusion model. The aim is to provide a rigorous basis for those models which are actually employed in practice, and to analyze the approximation properties of discretization procedures. The book is intended for applied and computational mathematicians, and for mathematically literate engineers, who wish to gain an understanding of the mathematical framework that is pertinent to device modeling. The latter audience will welcome the introduction of hydrodynamic and energy transport models in Chap. 3. Solutions of the nonlinear steady-state systems are analyzed as the fixed points of a mapping T, or better, a family of such mappings, distinguished by system decoupling. Significant attention is paid to questions related to the mathematical properties of this mapping, termed the Gummel map. Compu tational aspects of this fixed point mapping for analysis of discretizations are discussed as well. We present a novel nonlinear approximation theory, termed the Kras nosel'skii operator calculus, which we develop in Chap. 6 as an appropriate extension of the Babuska-Aziz inf-sup linear saddle point theory. It is shown in Chap. 5 how this applies to the semiconductor model. We also present in Chap. 4 a thorough study of various realizations of the Gummel map, which includes non-uniformly elliptic systems and variational inequalities. In Chap.

ICIAM 91

ICIAM 91 PDF Author: Robert E. O'Malley
Publisher: SIAM
ISBN: 9780898713022
Category : Mathematics
Languages : en
Pages : 424

Book Description
Proceedings -- Computer Arithmetic, Algebra, OOP.