A Course in Operator Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Course in Operator Theory PDF full book. Access full book title A Course in Operator Theory by John B. Conway. Download full books in PDF and EPUB format.

A Course in Operator Theory

A Course in Operator Theory PDF Author: John B. Conway
Publisher: American Mathematical Soc.
ISBN: 0821820656
Category : Mathematics
Languages : en
Pages : 390

Book Description
Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.

A Course in Operator Theory

A Course in Operator Theory PDF Author: John B. Conway
Publisher: American Mathematical Soc.
ISBN: 0821820656
Category : Mathematics
Languages : en
Pages : 390

Book Description
Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.

A Course in Operator Theory

A Course in Operator Theory PDF Author: John B. Conway
Publisher:
ISBN: 9781470409258
Category :
Languages : en
Pages :

Book Description


C*-Algebras and Operator Theory

C*-Algebras and Operator Theory PDF Author: Gerald J. Murphy
Publisher: Academic Press
ISBN: 0080924964
Category : Mathematics
Languages : en
Pages : 297

Book Description
This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

Elements of Operator Theory

Elements of Operator Theory PDF Author: Carlos S. Kubrusly
Publisher: Springer Science & Business Media
ISBN: 1475733283
Category : Mathematics
Languages : en
Pages : 535

Book Description
{\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.

A Course in Functional Analysis

A Course in Functional Analysis PDF Author: John B Conway
Publisher: Springer
ISBN: 1475743831
Category : Mathematics
Languages : en
Pages : 416

Book Description
This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS

An Operator Theory Problem Book

An Operator Theory Problem Book PDF Author: Mohammed Hichem Mortad
Publisher: World Scientific
ISBN: 9813236272
Category : Mathematics
Languages : en
Pages : 656

Book Description
This book is for third and fourth year university mathematics students (and Master students) as well as lecturers and tutors in mathematics and anyone who needs the basic facts on Operator Theory (e.g. Quantum Mechanists). The main setting for bounded linear operators here is a Hilbert space. There is, however, a generous part on General Functional Analysis (not too advanced though). There is also a chapter on Unbounded Closed Operators.The book is divided into two parts. The first part contains essential background on all of the covered topics with the sections: True or False Questions, Exercises, Tests and More Exercises. In the second part, readers may find answers and detailed solutions to the True or False Questions, Exercises and Tests.Another virtue of the book is the variety of the topics and the exercises and the way they are tackled. In many cases, the approaches are different from what is known in the literature. Also, some very recent results from research papers are included.

Elementary Operator Theory

Elementary Operator Theory PDF Author: Marat V. Markin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110598884
Category : Mathematics
Languages : en
Pages : 490

Book Description
The book is intended as a text for a one-semester graduate course in operator theory to be taught "from scratch'', not as a sequel to a functional analysis course, with the basics of the spectral theory of linear operators taking the center stage. The book consists of six chapters and appendix, with the material flowing from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), the Banach Fixed-Point Theorem and its applications, such as Picard's Existence and Uniqueness Theorem, through the basics of linear operators, two of the three fundamental principles (the Uniform Boundedness Principle and the Open Mapping Theorem and its equivalents: the Inverse Mapping and Closed Graph Theorems), to the elements of the spectral theory, including Gelfand's Spectral Radius Theorem and the Spectral Theorem for Compact Self-Adjoint Operators, and its applications, such as the celebrated Lyapunov Stability Theorem. Conceived as a text to be used in a classroom, the book constantly calls for the student's actively mastering the knowledge of the subject matter. There are problems at the end of each chapter, starting with Chapter 2 and totaling at 150. Many important statements are given as problems and frequently referred to in the main body. There are also 432 Exercises throughout the text, including Chapter 1 and the Appendix, which require of the student to prove or verify a statement or an example, fill in certain details in a proof, or provide an intermediate step or a counterexample. They are also an inherent part of the material. More difficult problems are marked with an asterisk, many problems and exercises are supplied with "existential'' hints. The book is generous on Examples and contains numerous Remarks accompanying definitions, examples, and statements to discuss certain subtleties, raise questions on whether the converse assertions are true, whenever appropriate, or whether the conditions are essential. With carefully chosen material, proper attention given to applications, and plenty of examples, problems, and exercises, this well-designed text is ideal for a one-semester Master's level graduate course in operator theory with emphasis on spectral theory for students majoring in mathematics, physics, computer science, and engineering. Contents Preface Preliminaries Metric Spaces Vector Spaces, Normed Vector Spaces, and Banach Spaces Linear Operators Elements of Spectral Theory in a Banach Space Setting Elements of Spectral Theory in a Hilbert Space Setting Appendix: The Axiom of Choice and Equivalents Bibliography Index

A Short Course on Spectral Theory

A Short Course on Spectral Theory PDF Author: William Arveson
Publisher: Springer Science & Business Media
ISBN: 0387953000
Category : Mathematics
Languages : en
Pages : 140

Book Description
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.

Operator Theory in Function Spaces

Operator Theory in Function Spaces PDF Author: Kehe Zhu
Publisher: American Mathematical Soc.
ISBN: 0821839659
Category : Mathematics
Languages : en
Pages : 368

Book Description
This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.

A Comprehensive Course in Analysis

A Comprehensive Course in Analysis PDF Author: Barry Simon
Publisher:
ISBN: 9781470411039
Category : Mathematical analysis
Languages : en
Pages : 749

Book Description
A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis