Author: Neculai Andrei
Publisher: Springer
ISBN: 9783030429492
Category : Mathematics
Languages : en
Pages : 486
Book Description
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.
Nonlinear Conjugate Gradient Methods for Unconstrained Optimization
Author: Neculai Andrei
Publisher: Springer
ISBN: 9783030429492
Category : Mathematics
Languages : en
Pages : 486
Book Description
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.
Publisher: Springer
ISBN: 9783030429492
Category : Mathematics
Languages : en
Pages : 486
Book Description
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.
Conjugate Gradient Algorithms in Nonconvex Optimization
Author: Radoslaw Pytlak
Publisher: Springer Science & Business Media
ISBN: 354085634X
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book details algorithms for large-scale unconstrained and bound constrained optimization. It shows optimization techniques from a conjugate gradient algorithm perspective as well as methods of shortest residuals, which have been developed by the author.
Publisher: Springer Science & Business Media
ISBN: 354085634X
Category : Mathematics
Languages : en
Pages : 493
Book Description
This book details algorithms for large-scale unconstrained and bound constrained optimization. It shows optimization techniques from a conjugate gradient algorithm perspective as well as methods of shortest residuals, which have been developed by the author.
Encyclopedia of Optimization
Author: Christodoulos A. Floudas
Publisher: Springer Science & Business Media
ISBN: 0387747583
Category : Mathematics
Languages : en
Pages : 4646
Book Description
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Publisher: Springer Science & Business Media
ISBN: 0387747583
Category : Mathematics
Languages : en
Pages : 4646
Book Description
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
A Conjugate Gradient Method for Nonlinear Programming
Author: Donald Goldfarb
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages : 244
Book Description
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages : 244
Book Description
Conjugate Gradient Algorithms and Finite Element Methods
Author: Michal Krizek
Publisher: Springer Science & Business Media
ISBN: 3642185606
Category : Science
Languages : en
Pages : 405
Book Description
The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.
Publisher: Springer Science & Business Media
ISBN: 3642185606
Category : Science
Languages : en
Pages : 405
Book Description
The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve complicated, direct and inverse, multidemensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing.
Linear and Nonlinear Conjugate Gradient-related Methods
Author: Loyce M. Adams
Publisher: SIAM
ISBN: 9780898713763
Category : Mathematics
Languages : en
Pages : 186
Book Description
Proceedings of the AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995.
Publisher: SIAM
ISBN: 9780898713763
Category : Mathematics
Languages : en
Pages : 186
Book Description
Proceedings of the AMS-IMS-SIAM Summer Research Conference held at the University of Washington, July 1995.
Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology
Author: Neculai Andrei
Publisher: Springer
ISBN: 3319583565
Category : Mathematics
Languages : en
Pages : 514
Book Description
This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.
Publisher: Springer
ISBN: 3319583565
Category : Mathematics
Languages : en
Pages : 514
Book Description
This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs
Author: Josef Malek
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Publisher: SIAM
ISBN: 161197383X
Category : Mathematics
Languages : en
Pages : 106
Book Description
Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs?is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book?s central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.?
Gradient Optimization and Nonlinear Control
Author: Lawrence Hasdorff
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 288
Book Description
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 288
Book Description
Nonlinear Programming
Author: Mordecai Avriel
Publisher: Courier Corporation
ISBN: 9780486432274
Category : Mathematics
Languages : en
Pages : 548
Book Description
This overview provides a single-volume treatment of key algorithms and theories. Begins with the derivation of optimality conditions and discussions of convex programming, duality, generalized convexity, and analysis of selected nonlinear programs, and then explores techniques for numerical solutions and unconstrained optimization methods. 1976 edition. Includes 58 figures and 7 tables.
Publisher: Courier Corporation
ISBN: 9780486432274
Category : Mathematics
Languages : en
Pages : 548
Book Description
This overview provides a single-volume treatment of key algorithms and theories. Begins with the derivation of optimality conditions and discussions of convex programming, duality, generalized convexity, and analysis of selected nonlinear programs, and then explores techniques for numerical solutions and unconstrained optimization methods. 1976 edition. Includes 58 figures and 7 tables.