Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
A Brief Guide to Algebraic Number Theory
Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 164
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Algorithmic Algebraic Number Theory
Author: M. Pohst
Publisher: Cambridge University Press
ISBN: 9780521596695
Category : Mathematics
Languages : en
Pages : 520
Book Description
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
Publisher: Cambridge University Press
ISBN: 9780521596695
Category : Mathematics
Languages : en
Pages : 520
Book Description
Now in paperback, this classic book is addresssed to all lovers of number theory. On the one hand, it gives a comprehensive introduction to constructive algebraic number theory, and is therefore especially suited as a textbook for a course on that subject. On the other hand many parts go beyond an introduction an make the user familliar with recent research in the field. For experimental number theoreticians new methods are developed and new results are obtained which are of great importance for them. Both computer scientists interested in higher arithmetic and those teaching algebraic number theory will find the book of value.
An Adventurer's Guide to Number Theory
Author: Richard Friedberg
Publisher: Courier Corporation
ISBN: 0486152693
Category : Mathematics
Languages : en
Pages : 241
Book Description
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.
Publisher: Courier Corporation
ISBN: 0486152693
Category : Mathematics
Languages : en
Pages : 241
Book Description
This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.
A Brief Guide to Algebraic Number Theory
Author: H. P. F. Swinnerton-Dyer
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 160
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
Publisher: Cambridge University Press
ISBN: 9780521004237
Category : Mathematics
Languages : en
Pages : 160
Book Description
Broad graduate-level account of Algebraic Number Theory, first published in 2001, including exercises, by a world-renowned author.
A Course in Computational Algebraic Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556
Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556
Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Number Theory and Algebraic Geometry
Author: Miles Reid
Publisher: Cambridge University Press
ISBN: 9780521545181
Category : Mathematics
Languages : en
Pages : 312
Book Description
This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.
Publisher: Cambridge University Press
ISBN: 9780521545181
Category : Mathematics
Languages : en
Pages : 312
Book Description
This volume honors Sir Peter Swinnerton-Dyer's mathematical career spanning more than 60 years' of amazing creativity in number theory and algebraic geometry.
Algebraic Number Theory
Author: Richard A. Mollin
Publisher: CRC Press
ISBN: 1439845999
Category : Computers
Languages : en
Pages : 424
Book Description
Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications.
Publisher: CRC Press
ISBN: 1439845999
Category : Computers
Languages : en
Pages : 424
Book Description
Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications.
The Math Dude's Quick and Dirty Guide to Algebra
Author: Jason Marshall
Publisher: St. Martin's Griffin
ISBN: 1429983361
Category : Mathematics
Languages : en
Pages : 498
Book Description
Need some serious help solving equations? Totally frustrated by polynomials, parabolas and that dreaded little x? THE MATH DUDE IS HERE TO HELP! Jason Marshall, popular podcast host known to his fans as The Math Dude, understands that algebra can cause agony. But he's determined to show you that you can solve those confusing, scream-inducing math problems--and it won't be as hard as you think! Jason kicks things off with a basic-training boot camp to help you review the essential math you'll need to truly "get" algebra. The basics covered, you'll be ready to tackle the concepts that make up the core of algebra. You'll get step-by-step instructions and tutorials to help you finally understand the problems that stump you the most, including loads of tips on: - Working with fractions, decimals, exponents, radicals, functions, polynomials and more - Solving all kinds of equations, from basic linear problems to the quadratic formula and beyond - Using graphs and understanding why they make solving complex algebra problems easier Learning algebra doesn't have to be a form of torture, and with The Math Dude's Quick and Dirty Guide to Algebra, it won't be. Packed with tons of fun features including "secret agent math-libs," and "math brain games," and full of quick and dirty tips that get right to the point, this book will have even the biggest math-o-phobes basking in a-ha moments and truly understanding algebra in a way that will stick for years (and tests) to come. Whether you're a student who needs help passing algebra class, a parent who wants to help their child meet that goal, or somebody who wants to brush up on their algebra skills for a new job or maybe even just for fun, look no further. Sit back, relax, and let this guide take you on a trip through the world of algebra.
Publisher: St. Martin's Griffin
ISBN: 1429983361
Category : Mathematics
Languages : en
Pages : 498
Book Description
Need some serious help solving equations? Totally frustrated by polynomials, parabolas and that dreaded little x? THE MATH DUDE IS HERE TO HELP! Jason Marshall, popular podcast host known to his fans as The Math Dude, understands that algebra can cause agony. But he's determined to show you that you can solve those confusing, scream-inducing math problems--and it won't be as hard as you think! Jason kicks things off with a basic-training boot camp to help you review the essential math you'll need to truly "get" algebra. The basics covered, you'll be ready to tackle the concepts that make up the core of algebra. You'll get step-by-step instructions and tutorials to help you finally understand the problems that stump you the most, including loads of tips on: - Working with fractions, decimals, exponents, radicals, functions, polynomials and more - Solving all kinds of equations, from basic linear problems to the quadratic formula and beyond - Using graphs and understanding why they make solving complex algebra problems easier Learning algebra doesn't have to be a form of torture, and with The Math Dude's Quick and Dirty Guide to Algebra, it won't be. Packed with tons of fun features including "secret agent math-libs," and "math brain games," and full of quick and dirty tips that get right to the point, this book will have even the biggest math-o-phobes basking in a-ha moments and truly understanding algebra in a way that will stick for years (and tests) to come. Whether you're a student who needs help passing algebra class, a parent who wants to help their child meet that goal, or somebody who wants to brush up on their algebra skills for a new job or maybe even just for fun, look no further. Sit back, relax, and let this guide take you on a trip through the world of algebra.
Algebraic Number Theory
Author: Frazer Jarvis
Publisher: Springer
ISBN: 3319075454
Category : Mathematics
Languages : en
Pages : 298
Book Description
This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.
Publisher: Springer
ISBN: 3319075454
Category : Mathematics
Languages : en
Pages : 298
Book Description
This undergraduate textbook provides an approachable and thorough introduction to the topic of algebraic number theory, taking the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level.
Number Theory and Its History
Author: Oystein Ore
Publisher: Courier Corporation
ISBN: 0486136434
Category : Mathematics
Languages : en
Pages : 404
Book Description
Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.
Publisher: Courier Corporation
ISBN: 0486136434
Category : Mathematics
Languages : en
Pages : 404
Book Description
Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.