Author: Liang Huang
Publisher: Springer Nature
ISBN: 3031016661
Category : Technology & Engineering
Languages : en
Pages : 101
Book Description
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
3D Electro-Rotation of Single Cells
Author: Liang Huang
Publisher: Springer Nature
ISBN: 3031016661
Category : Technology & Engineering
Languages : en
Pages : 101
Book Description
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
Publisher: Springer Nature
ISBN: 3031016661
Category : Technology & Engineering
Languages : en
Pages : 101
Book Description
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
3D Electro-Rotation of Single Cells
Author: Liang Huang
Publisher: Morgan & Claypool Publishers
ISBN: 1681736926
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
Publisher: Morgan & Claypool Publishers
ISBN: 1681736926
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
Dielectrophoresis microfluidic chips have been widely used in various biological applications due to their advantages of convenient operation, high throughput, and low cost. However, most of the DEP microfluidic chips are based on 2D planar electrodes which have some limitations, such as electric field attenuation, small effective working regions, and weak DEP forces. In order to overcome the limitations of 2D planar electrodes, two kinds of thick-electrode DEP chips were designed to realize manipulation and multi-parameter measurement of single cells. Based on the multi-electrode structure of thick-electrode DEP, a single-cell 3D electro-rotation chip of "Armillary Sphere" was designed. The chip uses four thick electrodes and a bottom planar electrode to form an electric field chamber, which can control 3D rotation of single cells under different electric signal configurations. Electrical property measurement and 3D image reconstruction of single cells are achieved based on single-cell 3D rotation. This work overcomes the limitations of 2D planar electrodes and effectively solves the problem of unstable spatial position of single-cell samples, and provides a new platform for single-cell analysis. Based on multi-electrode structure of thick-electrode DEP, a microfluidic chip with optoelectronic integration was presented. A dual-fiber optical stretcher embedded in thick electrodes can trap and stretch a single cell while the thick electrodes are used for single-cell rotation. Stretching and rotation manipulation gives the chip the ability to simultaneously measure mechanical and electrical properties of single cells, providing a versatile platform for single-cell analysis, further extending the application of thick-electrode DEP in biological manipulation and analysis.
Microfluidics in Cell Biology Part C: Microfluidics for Cellular and Subcellular Analysis
Author:
Publisher: Academic Press
ISBN: 0128142855
Category : Science
Languages : en
Pages : 266
Book Description
Microfluidics in Cell Biology Part C, Volume 148, a new release in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are three sections on microfluidics in various multi-cellular models, including microfluidics in cell monolayers/spheroids, microfluidics in organ on chips, and microfluidics in model organisms. Specific chapters discuss collective migration in microtubes, leukocyte adhesion dynamics on endothelial monolayers under flow, constrained spheroid for perfusion culture, cells in droplet arrays, heart on chips, kidney on chips, liver on chips, and more. - Contains contributions from experts in the field from across the world - Covers a wide array of topics on both mitosis and meiosis - Includes relevant, analysis based topics
Publisher: Academic Press
ISBN: 0128142855
Category : Science
Languages : en
Pages : 266
Book Description
Microfluidics in Cell Biology Part C, Volume 148, a new release in the Methods in Cell Biology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Unique to this updated volume are three sections on microfluidics in various multi-cellular models, including microfluidics in cell monolayers/spheroids, microfluidics in organ on chips, and microfluidics in model organisms. Specific chapters discuss collective migration in microtubes, leukocyte adhesion dynamics on endothelial monolayers under flow, constrained spheroid for perfusion culture, cells in droplet arrays, heart on chips, kidney on chips, liver on chips, and more. - Contains contributions from experts in the field from across the world - Covers a wide array of topics on both mitosis and meiosis - Includes relevant, analysis based topics
Robotics for Cell Manipulation and Characterization
Author: Changsheng Dai
Publisher: Elsevier
ISBN: 0323952143
Category : Computers
Languages : en
Pages : 402
Book Description
Robotics for Cell Manipulation and Characterization provides fundamental principles underpinning robotic cell manipulation and characterization, state-of-the-art technical advances in micro/nano robotics, new discoveries of cell biology enabled by robotic systems, and their applications in clinical diagnosis and treatment. This book covers several areas, including robotics, control, computer vision, biomedical engineering and life sciences using understandable figures and tables to enhance readers' comprehension and pinpoint challenges and opportunities for biological and biomedical research. - Focuses on, and comprehensively covers, robotics for cell manipulation and characterization - Highlights recent advances in cell biology and disease treatment enabled by robotic cell manipulation and characterization - Provides insightful outlooks on future challenges and opportunities
Publisher: Elsevier
ISBN: 0323952143
Category : Computers
Languages : en
Pages : 402
Book Description
Robotics for Cell Manipulation and Characterization provides fundamental principles underpinning robotic cell manipulation and characterization, state-of-the-art technical advances in micro/nano robotics, new discoveries of cell biology enabled by robotic systems, and their applications in clinical diagnosis and treatment. This book covers several areas, including robotics, control, computer vision, biomedical engineering and life sciences using understandable figures and tables to enhance readers' comprehension and pinpoint challenges and opportunities for biological and biomedical research. - Focuses on, and comprehensively covers, robotics for cell manipulation and characterization - Highlights recent advances in cell biology and disease treatment enabled by robotic cell manipulation and characterization - Provides insightful outlooks on future challenges and opportunities
Single Cell Analysis in Biotechnology and Systems Biology
Author: Fan-Gang Tseng
Publisher: MDPI
ISBN: 3038421936
Category : Science
Languages : en
Pages : 237
Book Description
This book is a printed edition of the Special Issue "Single Cell Analysis in Biotechnology and Systems Biology" that was published in IJMS
Publisher: MDPI
ISBN: 3038421936
Category : Science
Languages : en
Pages : 237
Book Description
This book is a printed edition of the Special Issue "Single Cell Analysis in Biotechnology and Systems Biology" that was published in IJMS
Nanosensors for Futuristic Smart and Intelligent Healthcare Systems
Author: Suresh Kaushik
Publisher: CRC Press
ISBN: 1000684245
Category : Science
Languages : en
Pages : 415
Book Description
The book, Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, presents a treatise on nanosensors technology including wearables, implantable devices and wireless tools. The recent pandemic (COVID-19) has changed the behaviour of people towards diagnosis of infectious diseases and monitoring remote patient health status in real-time. The main focus of this book is the basic concepts of nanomaterials and sensing paradigms for medical devices based on nanosensor technology. The book will be valuable to researchers, engineers and scientists interested in the field of healthcare for monitoring health status in real-time.
Publisher: CRC Press
ISBN: 1000684245
Category : Science
Languages : en
Pages : 415
Book Description
The book, Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, presents a treatise on nanosensors technology including wearables, implantable devices and wireless tools. The recent pandemic (COVID-19) has changed the behaviour of people towards diagnosis of infectious diseases and monitoring remote patient health status in real-time. The main focus of this book is the basic concepts of nanomaterials and sensing paradigms for medical devices based on nanosensor technology. The book will be valuable to researchers, engineers and scientists interested in the field of healthcare for monitoring health status in real-time.
Essentials of Single-Cell Analysis
Author: Fan-Gang Tseng
Publisher: Springer
ISBN: 3662491184
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.
Publisher: Springer
ISBN: 3662491184
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
This book provides an overview of single-cell isolation, separation, injection, lysis and dynamics analysis as well as a study of their heterogeneity using different miniaturized devices. As an important part of single-cell analysis, different techniques including electroporation, microinjection, optical trapping, optoporation, rapid electrokinetic patterning and optoelectronic tweezers are described in detail. It presents different fluidic systems (e.g. continuous micro/nano-fluidic devices, microfluidic cytometry) and their integration with sensor technology, optical and hydrodynamic stretchers etc., and demonstrates the applications of single-cell analysis in systems biology, proteomics, genomics, epigenomics, cancer transcriptomics, metabolomics, biomedicine and drug delivery systems. It also discusses the future challenges for single-cell analysis, including the advantages and limitations. This book is enjoyable reading material while at the same time providing essential information to scientists in academia and professionals in industry working on different aspects of single-cell analysis. Dr. Fan-Gang Tseng is a Distinguished Professor of Engineering and System Science at the National Tsing Hua University, Taiwan. Dr. Tuhin Subhra Santra is a Research Associate at the California Nano Systems Institute, University of California at Los Angeles, USA.
Cell Viability Assays
Author: Oliver Friedrich
Publisher: Springer Nature
ISBN: 1071630520
Category : Science
Languages : en
Pages : 501
Book Description
This updated edition explores assessing cell viability as a measure for cell fitness under conditions of physiological and patho-physiological stress as well as challenging conditions to cellular and tissue homeostasis, and accounts for the ongoing 2D-to-3D development with topics and assays that target cell viability, mobility, and functionality of tissues and organs, natural or bioartificial, in 3D. The book’s contents span a wide range of viability and functionality assays, from impedance spectroscopy to chemiluminescence, fluorescence and label-free optical detection methodologies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Cell Viability Assays: Methods and Protocols, Second Edition serves as a valuable resource to the growing community in bioinspired life sciences, biomedical sciences, and biotechnology by providing more standardized protocols to probe the “wellbeing” of cells in various environments.
Publisher: Springer Nature
ISBN: 1071630520
Category : Science
Languages : en
Pages : 501
Book Description
This updated edition explores assessing cell viability as a measure for cell fitness under conditions of physiological and patho-physiological stress as well as challenging conditions to cellular and tissue homeostasis, and accounts for the ongoing 2D-to-3D development with topics and assays that target cell viability, mobility, and functionality of tissues and organs, natural or bioartificial, in 3D. The book’s contents span a wide range of viability and functionality assays, from impedance spectroscopy to chemiluminescence, fluorescence and label-free optical detection methodologies. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Cell Viability Assays: Methods and Protocols, Second Edition serves as a valuable resource to the growing community in bioinspired life sciences, biomedical sciences, and biotechnology by providing more standardized protocols to probe the “wellbeing” of cells in various environments.
Nanotechnology for Bioengineers
Author: Wujie Zhang
Publisher: Springer Nature
ISBN: 3031016688
Category : Technology & Engineering
Languages : en
Pages : 95
Book Description
Nanotechnology is an interdisciplinary field that is rapidly evolving and expanding. Significant advancements have been made in nanotechnology-related disciplines in the past few decades and continued growth and progression in the field are anticipated. Moreover, nanotechnology, omnipresent in innovation, has been applied to resolve critical challenges in nearly every field, especially those related to biological technologies and processes. This book, used as either a textbook for a short course or a reference book, provides state-of-the-art analysis of essential topics in nanotechnology for bioengineers studying and working in biotechnology, chemical/biochemical, pharmaceutical, biomedical, and other related fields. The book topics range from introduction to nanotechnology and nanofabrication to applications of nanotechnology in various biological fields. This book not only intends to introduce bioengineers to the amazing world of nanotechnology, but also inspires them to use nanotechnology to address some of the world's biggest challenges.
Publisher: Springer Nature
ISBN: 3031016688
Category : Technology & Engineering
Languages : en
Pages : 95
Book Description
Nanotechnology is an interdisciplinary field that is rapidly evolving and expanding. Significant advancements have been made in nanotechnology-related disciplines in the past few decades and continued growth and progression in the field are anticipated. Moreover, nanotechnology, omnipresent in innovation, has been applied to resolve critical challenges in nearly every field, especially those related to biological technologies and processes. This book, used as either a textbook for a short course or a reference book, provides state-of-the-art analysis of essential topics in nanotechnology for bioengineers studying and working in biotechnology, chemical/biochemical, pharmaceutical, biomedical, and other related fields. The book topics range from introduction to nanotechnology and nanofabrication to applications of nanotechnology in various biological fields. This book not only intends to introduce bioengineers to the amazing world of nanotechnology, but also inspires them to use nanotechnology to address some of the world's biggest challenges.
Exosomes and MicroRNAs in Biomedical Science
Author: Hamed Mirzaei
Publisher: Morgan & Claypool Publishers
ISBN: 1636393489
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
MicroRNAs (miRNAs) are a member of the family of non-coding RNA molecules, and consist of small conserved sequences between 19–25 nucleotides in length that are responsible for regulating many cellular functions by affecting a wide range of messenger RNAs in a sequence specific manner. Fundamental biological processes like cell proliferation and growth, stress resistance, tumorigenesis, fat metabolism, and neural development have all been shown to be governed by miRNAs. miRNAs carry out the post-transcriptional silencing of gene expression via targeting the 30-untranslated region (UTR) of the complementary mRNA sequence. The dysregulation of the expression levels of various miRNAs is typical of tumor cells, and has been associated with tumor progression and poor prognosis. Many miRNAs are up-regulated in cancer, where they can silence tumor suppressor genes such as apoptosis and immune response associated genes. Therefore, it is possible to profile the expression levels of miRNAs as biomarkers, in order to diagnose cancer and noncancerous diseases. Moreover, cancer detection in the early stages is crucial in clinical situations. Characterization of miRNAs in serum, plasma, and other bodily fluids, and understanding their stability against RNase degradation, is important to assess their suitability as biomarkers and diagnostic tools. Exosomes play an important role in inter-cellular communications, and these nanosized particles have various functions in diverse physiological pathways, in normal as well as abnormal cells. Exosomes can carry diverse cargos such as mRNAs, miRNAs, and proteins that transfer information between donor and recipient cells. Furthermore, uptake of exosomes and their cargos may promote or suppress various molecular and cellular pathways, which alter the cellular behavior. Many reports have discussed the role of exosomes released from cancer cells on the progression of cancer at various stages. Exosomes and their cargos may affect the growth of the tumor, metastasis, drug resistance, immune system function, as well as angiogenesis. Therefore, exosomes have been explored as diagnostic biomarkers in many cancers. Moreover, exosomes can be used as biological vehicles to deliver different drugs and agents like doxorubicin (DOX), miRNAs, and siRNAs. The present book covers the role of exosomes and micro-RNAs in the pathogenesis and treatment of various diseases.
Publisher: Morgan & Claypool Publishers
ISBN: 1636393489
Category : Technology & Engineering
Languages : en
Pages : 175
Book Description
MicroRNAs (miRNAs) are a member of the family of non-coding RNA molecules, and consist of small conserved sequences between 19–25 nucleotides in length that are responsible for regulating many cellular functions by affecting a wide range of messenger RNAs in a sequence specific manner. Fundamental biological processes like cell proliferation and growth, stress resistance, tumorigenesis, fat metabolism, and neural development have all been shown to be governed by miRNAs. miRNAs carry out the post-transcriptional silencing of gene expression via targeting the 30-untranslated region (UTR) of the complementary mRNA sequence. The dysregulation of the expression levels of various miRNAs is typical of tumor cells, and has been associated with tumor progression and poor prognosis. Many miRNAs are up-regulated in cancer, where they can silence tumor suppressor genes such as apoptosis and immune response associated genes. Therefore, it is possible to profile the expression levels of miRNAs as biomarkers, in order to diagnose cancer and noncancerous diseases. Moreover, cancer detection in the early stages is crucial in clinical situations. Characterization of miRNAs in serum, plasma, and other bodily fluids, and understanding their stability against RNase degradation, is important to assess their suitability as biomarkers and diagnostic tools. Exosomes play an important role in inter-cellular communications, and these nanosized particles have various functions in diverse physiological pathways, in normal as well as abnormal cells. Exosomes can carry diverse cargos such as mRNAs, miRNAs, and proteins that transfer information between donor and recipient cells. Furthermore, uptake of exosomes and their cargos may promote or suppress various molecular and cellular pathways, which alter the cellular behavior. Many reports have discussed the role of exosomes released from cancer cells on the progression of cancer at various stages. Exosomes and their cargos may affect the growth of the tumor, metastasis, drug resistance, immune system function, as well as angiogenesis. Therefore, exosomes have been explored as diagnostic biomarkers in many cancers. Moreover, exosomes can be used as biological vehicles to deliver different drugs and agents like doxorubicin (DOX), miRNAs, and siRNAs. The present book covers the role of exosomes and micro-RNAs in the pathogenesis and treatment of various diseases.