Author:
Publisher:
ISBN: 9781509088041
Category :
Languages : en
Pages : 0
Book Description
36th Applied Imagery Pattern Recognition Workshop (aipr 2007).
Visual Informatics: Bridging Research and Practice
Author: Halimah Badioze Zaman
Publisher: Springer Science & Business Media
ISBN: 3642050352
Category : Computers
Languages : en
Pages : 938
Book Description
This book constitutes the refereed proceedings of the First International Visual Informatics Conference, IVIC 2009, held in Kuala Lumpur, Malaysia, in November 2009. The 82 revised research papers presented together with four invited keynote papers were carefully reviewed and selected from 216 submissions. The papers are organized in topical sections on virtual technologies and systems, virtual environment, visualization, engineering and simulation, as well as visual culture, services and society.
Publisher: Springer Science & Business Media
ISBN: 3642050352
Category : Computers
Languages : en
Pages : 938
Book Description
This book constitutes the refereed proceedings of the First International Visual Informatics Conference, IVIC 2009, held in Kuala Lumpur, Malaysia, in November 2009. The 82 revised research papers presented together with four invited keynote papers were carefully reviewed and selected from 216 submissions. The papers are organized in topical sections on virtual technologies and systems, virtual environment, visualization, engineering and simulation, as well as visual culture, services and society.
Digital and Discrete Geometry
Author: Li M. Chen
Publisher: Springer
ISBN: 3319120999
Category : Computers
Languages : en
Pages : 325
Book Description
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.
Publisher: Springer
ISBN: 3319120999
Category : Computers
Languages : en
Pages : 325
Book Description
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.
Nature-Inspired Design of Hybrid Intelligent Systems
Author: Patricia Melin
Publisher: Springer
ISBN: 331947054X
Category : Technology & Engineering
Languages : en
Pages : 817
Book Description
This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.
Publisher: Springer
ISBN: 331947054X
Category : Technology & Engineering
Languages : en
Pages : 817
Book Description
This book highlights recent advances in the design of hybrid intelligent systems based on nature-inspired optimization and their application in areas such as intelligent control and robotics, pattern recognition, time series prediction, and optimization of complex problems. The book is divided into seven main parts, the first of which addresses theoretical aspects of and new concepts and algorithms based on type-2 and intuitionistic fuzzy logic systems. The second part focuses on neural network theory, and explores the applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The book’s third part presents enhancements to meta-heuristics based on fuzzy logic techniques and describes new nature-inspired optimization algorithms that employ fuzzy dynamic adaptation of parameters, while the fourth part presents diverse applications of nature-inspired optimization algorithms. In turn, the fifth part investigates applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. The sixth part examines new optimization algorithms and their applications. Lastly, the seventh part is dedicated to the design and application of different hybrid intelligent systems.
Bio-Inspired Optimization for Medical Data Mining
Author: Sumit Srivastava
Publisher: John Wiley & Sons
ISBN: 1394214189
Category : Computers
Languages : en
Pages : 340
Book Description
This book is a comprehensive exploration of bio-inspired optimization techniques and their potential applications in healthcare. Bio-Inspired Optimization for Medical Data Mining is a groundbreaking book that delves into the convergence of nature’s ingenious algorithms and cutting-edge healthcare technology. Through a comprehensive exploration of state-of-the-art algorithms and practical case studies, readers gain unparalleled insights into optimizing medical data processing, enabling more precise diagnosis, optimizing treatment plans, and ultimately advancing the field of healthcare. Organized into 15 chapters, readers learn about the theoretical foundation of pragmatic implementation strategies and actionable advice. In addition, it addresses current developments in molecular subtyping and how they can enhance clinical care. By bridging the gap between cutting-edge technology and critical healthcare challenges, this book is a pivotal contribution, providing a roadmap for leveraging nature-inspired algorithms. In this book, the reader will discover Cutting-edge bio-inspired algorithms designed to optimize medical data processing, providing efficient and accurate solutions for complex healthcare challenges; How bio-inspired optimization can fine-tune diagnostic accuracy, leading to better patient outcomes and improved medical decision-making; How bio-inspired optimization propels healthcare into a new era, unlocking transformative solutions for medical data analysis; Practical insights and actionable advice on implementing bio-inspired optimization techniques and equipping effective real-world medical data scenarios; Compelling case studies illustrating how bio-inspired optimization has made a significant impact in the medical field, inspiring similar success stories. Audience This book is designed for a wide-ranging audience, including medical professionals, healthcare researchers, data scientists, and technology enthusiasts.
Publisher: John Wiley & Sons
ISBN: 1394214189
Category : Computers
Languages : en
Pages : 340
Book Description
This book is a comprehensive exploration of bio-inspired optimization techniques and their potential applications in healthcare. Bio-Inspired Optimization for Medical Data Mining is a groundbreaking book that delves into the convergence of nature’s ingenious algorithms and cutting-edge healthcare technology. Through a comprehensive exploration of state-of-the-art algorithms and practical case studies, readers gain unparalleled insights into optimizing medical data processing, enabling more precise diagnosis, optimizing treatment plans, and ultimately advancing the field of healthcare. Organized into 15 chapters, readers learn about the theoretical foundation of pragmatic implementation strategies and actionable advice. In addition, it addresses current developments in molecular subtyping and how they can enhance clinical care. By bridging the gap between cutting-edge technology and critical healthcare challenges, this book is a pivotal contribution, providing a roadmap for leveraging nature-inspired algorithms. In this book, the reader will discover Cutting-edge bio-inspired algorithms designed to optimize medical data processing, providing efficient and accurate solutions for complex healthcare challenges; How bio-inspired optimization can fine-tune diagnostic accuracy, leading to better patient outcomes and improved medical decision-making; How bio-inspired optimization propels healthcare into a new era, unlocking transformative solutions for medical data analysis; Practical insights and actionable advice on implementing bio-inspired optimization techniques and equipping effective real-world medical data scenarios; Compelling case studies illustrating how bio-inspired optimization has made a significant impact in the medical field, inspiring similar success stories. Audience This book is designed for a wide-ranging audience, including medical professionals, healthcare researchers, data scientists, and technology enthusiasts.
Conformal Prediction for Reliable Machine Learning
Author: Vineeth Balasubramanian
Publisher: Newnes
ISBN: 0124017150
Category : Computers
Languages : en
Pages : 323
Book Description
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Publisher: Newnes
ISBN: 0124017150
Category : Computers
Languages : en
Pages : 323
Book Description
The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. - Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning - Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering - Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection
Pattern Recognition and Machine Learning
Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0
Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)
Author:
Publisher:
ISBN: 9781467395588
Category : Image processing
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781467395588
Category : Image processing
Languages : en
Pages :
Book Description
Neural Networks for Pattern Recognition
Author: Christopher M. Bishop
Publisher: Oxford University Press
ISBN: 0198538642
Category : Computers
Languages : en
Pages : 501
Book Description
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.
Publisher: Oxford University Press
ISBN: 0198538642
Category : Computers
Languages : en
Pages : 501
Book Description
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.