Author:
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 2362
Book Description
A world list of books in the English language.
The Cumulative Book Index
Author:
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 2362
Book Description
A world list of books in the English language.
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 2362
Book Description
A world list of books in the English language.
The British National Bibliography
Author: Arthur James Wells
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1864
Book Description
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 1864
Book Description
Technical Report
Author: Project Search
Publisher:
ISBN:
Category : Crime
Languages : en
Pages : 1328
Book Description
Publisher:
ISBN:
Category : Crime
Languages : en
Pages : 1328
Book Description
Whitaker's Books in Print
Author:
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 2954
Book Description
Publisher:
ISBN:
Category : Bibliography, National
Languages : en
Pages : 2954
Book Description
Fundamentals of Optomechanics
Author: Daniel Vukobratovich
Publisher: CRC Press
ISBN: 1498770754
Category : Science
Languages : en
Pages : 463
Book Description
When Galileo designed the tube of his first telescope, optomechanics was born. Concerned with the shape and position of surfaces in an optical system, optomechanics is a subfield of physics that is arguably as old as optics. However, while universities offer courses on the subject, there is a scarcity in textbook selections that skillfully and properly convey optomechanical fundamentals to aspiring engineers. Complemented by tutorial examples and exercises, this textbook rectifies this issue by providing instructors and departments with a better choice for transmitting to students the basic principles of optomechanics and allowing them to comfortably gain familiarity with the field’s content. Practicing optical engineers who engage in self-study and wish to enhance the extent of their knowledge will also find benefit from the vast experience of the authors. The book begins with a discussion of materials based on optomechanical figures of merit and features chapters on windows, prisms, and lenses. The authors also cover topics related to design parameter, mounting small mirrors, metal mirrors with a discussion of infrared applications, and kinematic design. Overall, Fundamentals of Optomechanics outfits students and practitioners with a stellar foundation for exploring the design and support of optical system surfaces under a wide variety of conditions. Provides the fundamentals of optomechanics Presents self-contained, student-friendly prose, written by top scientists in the field Discusses materials, windows, individual lenses and multiple lenses Includes design, mounting, and performance of mirrors Includes homework problems and a solutions manual for adopting professors
Publisher: CRC Press
ISBN: 1498770754
Category : Science
Languages : en
Pages : 463
Book Description
When Galileo designed the tube of his first telescope, optomechanics was born. Concerned with the shape and position of surfaces in an optical system, optomechanics is a subfield of physics that is arguably as old as optics. However, while universities offer courses on the subject, there is a scarcity in textbook selections that skillfully and properly convey optomechanical fundamentals to aspiring engineers. Complemented by tutorial examples and exercises, this textbook rectifies this issue by providing instructors and departments with a better choice for transmitting to students the basic principles of optomechanics and allowing them to comfortably gain familiarity with the field’s content. Practicing optical engineers who engage in self-study and wish to enhance the extent of their knowledge will also find benefit from the vast experience of the authors. The book begins with a discussion of materials based on optomechanical figures of merit and features chapters on windows, prisms, and lenses. The authors also cover topics related to design parameter, mounting small mirrors, metal mirrors with a discussion of infrared applications, and kinematic design. Overall, Fundamentals of Optomechanics outfits students and practitioners with a stellar foundation for exploring the design and support of optical system surfaces under a wide variety of conditions. Provides the fundamentals of optomechanics Presents self-contained, student-friendly prose, written by top scientists in the field Discusses materials, windows, individual lenses and multiple lenses Includes design, mounting, and performance of mirrors Includes homework problems and a solutions manual for adopting professors
ACM '82
Author: Association for Computing Machinery
Publisher:
ISBN: 9780897910859
Category : Computers
Languages : en
Pages : 260
Book Description
Publisher:
ISBN: 9780897910859
Category : Computers
Languages : en
Pages : 260
Book Description
Optical Digital Image Storage System
Electronic Design
Author:
Publisher:
ISBN:
Category : Electronic apparatus and appliances
Languages : en
Pages : 986
Book Description
Publisher:
ISBN:
Category : Electronic apparatus and appliances
Languages : en
Pages : 986
Book Description
Introduction to Infrared and Electro-Optical Systems, Third Edition
Author: Ronald G. Driggers
Publisher: Artech House
ISBN: 163081833X
Category : Technology & Engineering
Languages : en
Pages : 739
Book Description
This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.
Publisher: Artech House
ISBN: 163081833X
Category : Technology & Engineering
Languages : en
Pages : 739
Book Description
This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.