2D Dirac Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download 2D Dirac Materials PDF full book. Access full book title 2D Dirac Materials by Desalegne Bekuretsion Teweldebrhan. Download full books in PDF and EPUB format.

2D Dirac Materials

2D Dirac Materials PDF Author: Desalegne Bekuretsion Teweldebrhan
Publisher:
ISBN: 9781124772226
Category : Electron beams
Languages : en
Pages : 120

Book Description
Silicon has been reaching physical limits as the semiconductor industry moves to smaller device feature sizes, increased integration densities and faster operation speeds. There is a strong need to engineer alternative materials, which can become foundation of new computational paradigms or lead to other applications such as efficient solid-state energy conversion. Recently discovered Dirac materials, which are characterized by the liner electron dispersion, are examples of such alternative materials. In this dissertation, I investigate two representatives of Dirac materials - graphene and topological insulators. Specifically, I focus on the (i) effects of electron beam irradiation on graphene properties and (ii) electronic and thermal characteristics of exfoliated films of Bi [subscript 2] Te [subscript 3] -family of topological insulators. I carried out Raman investigation of changes in graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5.20 keV). It was found that radiation exposures result in appearance of the disorder D band around 1345 cm [superscript -1]. The dependence of the ratio of the intensities of D and G peaks, I(D)/I(G), on the irradiation dose is non-monotonic suggesting graphene.s transformation to polycrystalline and then to disordered state. By controlling the irradiation dose one can change the carrier mobility and increase the resistance at the minimum conduction point. The obtained results may lead to new methods of defect engineering of graphene properties. They also have important implications for fabrication of graphene nanodevices, which involve electron beams. Bismuth telluride and related compounds are the best thermoelectric materials known today. Recently, it was determined that they reveal the topological insulator properties. We succeeded in the first "graphene-like" exfoliation of large-area crystalline films and ribbons of Bi [subscript 2] Te [subscript 3] with the thickness going down to a single quintuple. The presence of van der Waals gaps allowed us to disassemble Bi [subscript 2] Te [subscript 3] crystal into the five mono-atomic sheets consisting of Te [superscript (1)] -Bi-Te [superscript (2)] -Bi-Te [superscript (1)]. The exfoliated films had extremely low thermal conductivity and electrical resistance in the range required for thermoelectric applications. The obtained results may pave the way for producing Bi [subscript 2] Te [subscript 3] films and stacked superlattices with strong quantum confinement of charge carriers and predominantly surface transport, and allow one to obtain theoretically predicted order-of-magnitude higher thermoelectric figure-of-merit.

2D Dirac Materials

2D Dirac Materials PDF Author: Desalegne Bekuretsion Teweldebrhan
Publisher:
ISBN: 9781124772226
Category : Electron beams
Languages : en
Pages : 120

Book Description
Silicon has been reaching physical limits as the semiconductor industry moves to smaller device feature sizes, increased integration densities and faster operation speeds. There is a strong need to engineer alternative materials, which can become foundation of new computational paradigms or lead to other applications such as efficient solid-state energy conversion. Recently discovered Dirac materials, which are characterized by the liner electron dispersion, are examples of such alternative materials. In this dissertation, I investigate two representatives of Dirac materials - graphene and topological insulators. Specifically, I focus on the (i) effects of electron beam irradiation on graphene properties and (ii) electronic and thermal characteristics of exfoliated films of Bi [subscript 2] Te [subscript 3] -family of topological insulators. I carried out Raman investigation of changes in graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5.20 keV). It was found that radiation exposures result in appearance of the disorder D band around 1345 cm [superscript -1]. The dependence of the ratio of the intensities of D and G peaks, I(D)/I(G), on the irradiation dose is non-monotonic suggesting graphene.s transformation to polycrystalline and then to disordered state. By controlling the irradiation dose one can change the carrier mobility and increase the resistance at the minimum conduction point. The obtained results may lead to new methods of defect engineering of graphene properties. They also have important implications for fabrication of graphene nanodevices, which involve electron beams. Bismuth telluride and related compounds are the best thermoelectric materials known today. Recently, it was determined that they reveal the topological insulator properties. We succeeded in the first "graphene-like" exfoliation of large-area crystalline films and ribbons of Bi [subscript 2] Te [subscript 3] with the thickness going down to a single quintuple. The presence of van der Waals gaps allowed us to disassemble Bi [subscript 2] Te [subscript 3] crystal into the five mono-atomic sheets consisting of Te [superscript (1)] -Bi-Te [superscript (2)] -Bi-Te [superscript (1)]. The exfoliated films had extremely low thermal conductivity and electrical resistance in the range required for thermoelectric applications. The obtained results may pave the way for producing Bi [subscript 2] Te [subscript 3] films and stacked superlattices with strong quantum confinement of charge carriers and predominantly surface transport, and allow one to obtain theoretically predicted order-of-magnitude higher thermoelectric figure-of-merit.

Radiative Heat Transfer in 2D Dirac Materials

Radiative Heat Transfer in 2D Dirac Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

Quantum Effects in 2D Dirac Materials with Strong Spin-orbit Coupling

Quantum Effects in 2D Dirac Materials with Strong Spin-orbit Coupling PDF Author: Frederico Sousa
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Electron Transport and Plasmons in Dirac Materials and in Two-dimensional Materials

Electron Transport and Plasmons in Dirac Materials and in Two-dimensional Materials PDF Author: Jhih-Sheng Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 116

Book Description
Two-dimensional materials are one-atom-thick crystals, which are stable under ambient conditions. Heterostructures by stacking of two-dimensional (2D) crystals via the van der Waals force provide a versatile platform for investigation of emergent properties of composite materials. In this thesis, I studied three 2D materials, graphene, Bi$_2$Se$_3$ and hexagonal boron nitride (hBN), of which the first two materials host 2D Dirac fermions. The core of this thesis is to study the transport and optical properties of 2D Dirac fermions interacted with their three-dimensional (3D) environments. In Chapter 2, we consider electron transport of graphene, adsorbing clusters of charged impurities. We model the clusters as circular barriers. We calculate the differential, total, and transport cross-sections for scattering of two-dimensional massless Dirac electrons by a circular barrier. For scatterer of a small radius, the cross-sections are dominated by quantum effects such as resonant scattering that can be computed using the partial-wave series. Scattering by larger size barriers is better described within the classical picture of reflection and refraction of rays, which leads to phenomena of caustics, rainbow, and critical scattering. Refraction can be negative if the potential of the scatterer is repulsive, so that a $p$-$n$ junction forms at its boundary. Qualitative differences of this case from the $n$-$N$ doping case are examined. Quantum interference effects beyond the classical ray picture are also considered, such as normal and anomalous diffraction, and also whispering-gallery resonances. Implications of these results for transport and scanned-probe experiments in graphene and topological insulators are discussed. In Chapter 3, we consider how the Dirac plasmons of Bi$_2$Se$_3$ are coupled with its phonon polaritons. Layered topological insulators, for example, Bi$_2$Se$_3$ are optically hyperbolic materials in a range of THz frequencies. Such materials possess deeply subdiffractional, highly directional collective modes: hyperbolic phonon-polaritons. In thin crystals the dispersion of such modes is split into discrete subbands and is strongly influenced by electron surface states. If the surface states are doped, then hybrid collective modes result from coupling of the phonon-polaritons with surface plasmons. The strength of the hybridization can be controlled by an external gate that varies the chemical potential of the surface states. Momentum-dependence of the plasmon-phonon coupling leads to a polaritonic analog of the Goos-Hänchen effect. Directionality of the polaritonic rays and their tunable Goos-Hänchen shift are observable via THz nanoimaging.

Coupled Charge-spin Transport and Spin-orbit Phenomena in 2D Dirac Materials

Coupled Charge-spin Transport and Spin-orbit Phenomena in 2D Dirac Materials PDF Author: Manuel Offidani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


First-principles Studies of Novel Two-dimensional Dirac Materials

First-principles Studies of Novel Two-dimensional Dirac Materials PDF Author: Linyang Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 152

Book Description


Topological Insulators

Topological Insulators PDF Author: Shun-Qing Shen
Publisher: Springer Science & Business Media
ISBN: 364232858X
Category : Technology & Engineering
Languages : en
Pages : 234

Book Description
Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.

Dirac Matter

Dirac Matter PDF Author: Bertrand Duplantier
Publisher: Birkhäuser
ISBN: 3319325361
Category : Science
Languages : en
Pages : 139

Book Description
This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other materials than graphene, collectively known as "Dirac matter", and offer a thorough description of the merging transition of Dirac cones that occurs in the energy spectrum, in various experiments involving stretching of the microscopic hexagonal lattice; the third contribution, entitled "Quantum Transport in Graphene: Impurity Scattering as a Probe of the Dirac Spectrum", given by Hélène Bouchiat, a leading experimentalist in mesoscopic physics, with Sophie Guéron and Chuan Li, shows how measuring electrical transport, in particular magneto-transport in real graphene devices - contaminated by impurities and hence exhibiting a diffusive regime - allows one to deeply probe the Dirac nature of electrons. The last two contributions focus on topological insulators; in the authoritative "Experimental Signatures of Topological Insulators", Laurent Lévy reviews recent experimental progress in the physics of mercury-telluride samples under strain, which demonstrates that the surface of a three-dimensional topological insulator hosts a two-dimensional massless Dirac metal; the illuminating final contribution by David Carpentier, entitled "Topology of Bands in Solids: From Insulators to Dirac Matter", provides a geometric description of Bloch wave functions in terms of Berry phases and parallel transport, and of their topological classification in terms of invariants such as Chern numbers, and ends with a perspective on three-dimensional semi-metals as described by the Weyl equation. This book will be of broad general interest to physicists, mathematicians, and historians of science.

Quantum Theory and Symmetries

Quantum Theory and Symmetries PDF Author: M. B. Paranjape
Publisher: Springer Nature
ISBN: 3030557774
Category : Electronic books
Languages : en
Pages : 670

Book Description
This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions. .

2D Dirac Electrons in 3D Materials

2D Dirac Electrons in 3D Materials PDF Author: Shyama Varier Ramankutty
Publisher:
ISBN: 9789462339323
Category :
Languages : en
Pages : 151

Book Description
"Quantum materials pack the spooky properties of quantum mechanics into real-life materials you can make, pick up with tweezers and study in the lab. Those of interest to us show special electronic properties of great fundamental interest and have applications potential for future computer and electronics technologies. This thesis studies quantum materials in which the electronic states possess a special kind of twist, giving them a different topology to their regular electronic material cousins. Picturing the difference between a Möbius strip and a regular loop helps us get the idea of objects with differing topology. The research presented investigates the electronic states directly, using the photoelectric effect in angle resolved photoemission spectroscopy (ARPES) experiments, and was carried out on the candidate quasi-2D Dirac semimetal - SrMnSb2, a trio of rare earth hexaboride compounds, namely SmB6, YbB6 and CeB6, and on Bi-based 3D topological insulators. All of these materials families are predicted to be of the topological, twisty kind, and the final score from our experimental results from ARPES, combined with a varying mix of transport measurements in high magnetic fields, scanning tunneling microscopy and theoretical calculations of the electronic states is as follows. For SrMnSb2 the answer is no (= regular loop), for the hexaborides the jury is still out and for the Bi-based topological insulators the answer is definitely yes (= Möbius strip), whereby interesting effects involving extreme ultraviolet illumination offer new methods to understand and tune the twisty electronic states at the surface of these systems."--Samenvatting auteur.