Author: Tapan K. Sen
Publisher: John Wiley & Sons
ISBN: 0470742356
Category : Science
Languages : en
Pages : 404
Book Description
This book provides a practical guide to the basic essentials of earthquake engineering with a focus on seismic loading and structural design. Benefiting from the author’s extensive career in structural and earthquake engineering, dynamic analysis and lecturing, it is written from an industry perspective at a level suitable for graduate students. Fundamentals of Seismic Loading on Structures is organised into four major sections: introduction to earthquakes and related engineering problems, analysis, seismic loading, and design concepts. From a practical perspective, reviews linear and non-linear behaviour, introduces concepts of uniform hazard spectra, discusses loading provisions in design codes and examines soil-structure interaction issues, allowing the reader to quickly identify and implement information in a working environment. Discusses probabilistic methods that are widely employed in the assessment of seismic hazard, illustrating the use of Monte Carlo simulation with a number of worked examples. Summarises the latest developments in the field such as performance-based seismic engineering and advances in liquefaction research. “There are many books on earthquake engineering, but few are of direct use to the practising structural designer. This one, however, offers a new perspective, putting emphasis on the practical aspects of quantifying seismic loading, and explaining the importance of geotechnical effects during a major seismic event in readily understandable terms. The author has succeeded in marrying important seismological considerations with structural engineering practice, and this long-awaited book will find ready acceptance in the profession.” Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey
Fundamentals of Seismic Loading on Structures
Author: Tapan K. Sen
Publisher: John Wiley & Sons
ISBN: 0470742356
Category : Science
Languages : en
Pages : 404
Book Description
This book provides a practical guide to the basic essentials of earthquake engineering with a focus on seismic loading and structural design. Benefiting from the author’s extensive career in structural and earthquake engineering, dynamic analysis and lecturing, it is written from an industry perspective at a level suitable for graduate students. Fundamentals of Seismic Loading on Structures is organised into four major sections: introduction to earthquakes and related engineering problems, analysis, seismic loading, and design concepts. From a practical perspective, reviews linear and non-linear behaviour, introduces concepts of uniform hazard spectra, discusses loading provisions in design codes and examines soil-structure interaction issues, allowing the reader to quickly identify and implement information in a working environment. Discusses probabilistic methods that are widely employed in the assessment of seismic hazard, illustrating the use of Monte Carlo simulation with a number of worked examples. Summarises the latest developments in the field such as performance-based seismic engineering and advances in liquefaction research. “There are many books on earthquake engineering, but few are of direct use to the practising structural designer. This one, however, offers a new perspective, putting emphasis on the practical aspects of quantifying seismic loading, and explaining the importance of geotechnical effects during a major seismic event in readily understandable terms. The author has succeeded in marrying important seismological considerations with structural engineering practice, and this long-awaited book will find ready acceptance in the profession.” Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey
Publisher: John Wiley & Sons
ISBN: 0470742356
Category : Science
Languages : en
Pages : 404
Book Description
This book provides a practical guide to the basic essentials of earthquake engineering with a focus on seismic loading and structural design. Benefiting from the author’s extensive career in structural and earthquake engineering, dynamic analysis and lecturing, it is written from an industry perspective at a level suitable for graduate students. Fundamentals of Seismic Loading on Structures is organised into four major sections: introduction to earthquakes and related engineering problems, analysis, seismic loading, and design concepts. From a practical perspective, reviews linear and non-linear behaviour, introduces concepts of uniform hazard spectra, discusses loading provisions in design codes and examines soil-structure interaction issues, allowing the reader to quickly identify and implement information in a working environment. Discusses probabilistic methods that are widely employed in the assessment of seismic hazard, illustrating the use of Monte Carlo simulation with a number of worked examples. Summarises the latest developments in the field such as performance-based seismic engineering and advances in liquefaction research. “There are many books on earthquake engineering, but few are of direct use to the practising structural designer. This one, however, offers a new perspective, putting emphasis on the practical aspects of quantifying seismic loading, and explaining the importance of geotechnical effects during a major seismic event in readily understandable terms. The author has succeeded in marrying important seismological considerations with structural engineering practice, and this long-awaited book will find ready acceptance in the profession.” Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey
NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part 2 - Commentary, 2000 Edition, March 2001
2003 International Building Code Study Companion
Author: Douglas W. Thornburg
Publisher:
ISBN: 9781580011549
Category : Law
Languages : en
Pages : 424
Book Description
Publisher:
ISBN: 9781580011549
Category : Law
Languages : en
Pages : 424
Book Description
Notes on ACI 318-08, Building Code Requirements for Structural Concrete
Author: Portland Cement Association
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1044
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1044
Book Description
International Building Code 2015
Author: International Code Council
Publisher: International Code Council
ISBN: 9781609834678
Category : Building
Languages : en
Pages : 0
Book Description
Offers the latest regulations on designing and installing commercial and residential buildings.
Publisher: International Code Council
ISBN: 9781609834678
Category : Building
Languages : en
Pages : 0
Book Description
Offers the latest regulations on designing and installing commercial and residential buildings.
NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures
Earthquake-Resistant Structures
Author: Mohiuddin Ali Khan
Publisher: Butterworth-Heinemann
ISBN: 0080949444
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering
Publisher: Butterworth-Heinemann
ISBN: 0080949444
Category : Technology & Engineering
Languages : en
Pages : 437
Book Description
Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering
NEHRP Recommended Provisions (National Earthquake Hazards Reduction Program) for Seismic Regulations for New Buildings and Other Structures
Author: United States. Federal Emergency Management Agency
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 460
Book Description
Publisher:
ISBN:
Category : Building laws
Languages : en
Pages : 460
Book Description
Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public
Author: Federal Emergency Agency
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 169
Book Description
During the past few decades, the number of large public warehouse stores (often referred to as big-box stores) across the nation has grown significantly, changing both consumer buying habits and the public's risk of injury during earthquakes. During an earthquake, occupant safety in a big-box store depends on both the structural performance of the building and on the performance of the storage racks and their contents. Earthquake ground motions can cause storage racks to collapse or overturn if they are not properly designed, installed, maintained, and loaded. In addition, goods stored on the racks may spill or topple off. Both occurrences pose a life-safety risk to the exposed shopping public. The immediate stimulus for the project that resulted in this report was a 2003 request from the State of Washington to the Federal Emergency Management Agency (FEMA) for guidance concerning the life-safety risk posed by the storage racks in publicly accessible areas of retail stores, especially the risk of rack collapse of loss of stored goods during an earthquake. FEMA asked the Building Seismic Safety Council (BSSC) to develop the requested guidance. To do so, the BSSC established a Rack Project Task Group composed of practicing engineers, storage rack designers, researchers, representatives of the Rack Manufacturers Institute (RMI) and the Retail Industry Leaders Association, and members of applicable technical subcommittees responsible for updating the NEHRP Recommended Provisions. In developing this guidance document, the Task Group focused primarily on steel single selective pallet storage racks. It reviewed available information on storage rack performance during earthquakes and the background on the development of standards and code requirements for storage racks; assessed seismic requirements for storage racks and current practices with respect to rack design, maintenance and operations, quality assurance, and post-earthquake inspections; and examined available research and testing data. Based on its study, the Task Group developed short-term recommendations to improve current practice and formulated long-term recommendations to serve as the basis for improved standards documents such as the NEHRP Recommended Provisions, ASCE 7, and the RMI-developed storage rack specification. Over the near term, the Task Group recommends that the 2003 NEHRP Recommended Provisions requirements for steel single selective pallet storage rack design be followed and that connections be checked in accordance with a procedure to be developed by RMI. The Task Group also recommends that additional guidance presented in this report be voluntarily adopted by store owners and operators. Further, given the fact that maintenance and use of storage racks is a key element to their acceptable performance during earthquakes, store owners and operators should adopt an appropriate quality assurance plan; as a minimum, the best self-imposed practices of store owners and operators should be maintained. The Task Group's primary long-term recommendation is that the RMI specification be brought into conformance with the 2003 NEHRP Recommended Provisions, which is the basis for seismic requirements found in current seismic design standards and model building codes. The Task Group also recommends that optional performance-based and limit state procedures and component cyclic testing procedures be incorporated into the RMI-developed specification. Compliance with these procedures will demonstrate that the storage racks have the capacity to resist maximum considered earthquake ground motions without collapse. It also is recommended that regulatory bodies periodically review the quality assurance programs of stores and implement any regulations needed to satisfy life-safety concerns that relate to the securing of rack contents and rack maintenance and use.
Publisher: FEMA
ISBN:
Category :
Languages : en
Pages : 169
Book Description
During the past few decades, the number of large public warehouse stores (often referred to as big-box stores) across the nation has grown significantly, changing both consumer buying habits and the public's risk of injury during earthquakes. During an earthquake, occupant safety in a big-box store depends on both the structural performance of the building and on the performance of the storage racks and their contents. Earthquake ground motions can cause storage racks to collapse or overturn if they are not properly designed, installed, maintained, and loaded. In addition, goods stored on the racks may spill or topple off. Both occurrences pose a life-safety risk to the exposed shopping public. The immediate stimulus for the project that resulted in this report was a 2003 request from the State of Washington to the Federal Emergency Management Agency (FEMA) for guidance concerning the life-safety risk posed by the storage racks in publicly accessible areas of retail stores, especially the risk of rack collapse of loss of stored goods during an earthquake. FEMA asked the Building Seismic Safety Council (BSSC) to develop the requested guidance. To do so, the BSSC established a Rack Project Task Group composed of practicing engineers, storage rack designers, researchers, representatives of the Rack Manufacturers Institute (RMI) and the Retail Industry Leaders Association, and members of applicable technical subcommittees responsible for updating the NEHRP Recommended Provisions. In developing this guidance document, the Task Group focused primarily on steel single selective pallet storage racks. It reviewed available information on storage rack performance during earthquakes and the background on the development of standards and code requirements for storage racks; assessed seismic requirements for storage racks and current practices with respect to rack design, maintenance and operations, quality assurance, and post-earthquake inspections; and examined available research and testing data. Based on its study, the Task Group developed short-term recommendations to improve current practice and formulated long-term recommendations to serve as the basis for improved standards documents such as the NEHRP Recommended Provisions, ASCE 7, and the RMI-developed storage rack specification. Over the near term, the Task Group recommends that the 2003 NEHRP Recommended Provisions requirements for steel single selective pallet storage rack design be followed and that connections be checked in accordance with a procedure to be developed by RMI. The Task Group also recommends that additional guidance presented in this report be voluntarily adopted by store owners and operators. Further, given the fact that maintenance and use of storage racks is a key element to their acceptable performance during earthquakes, store owners and operators should adopt an appropriate quality assurance plan; as a minimum, the best self-imposed practices of store owners and operators should be maintained. The Task Group's primary long-term recommendation is that the RMI specification be brought into conformance with the 2003 NEHRP Recommended Provisions, which is the basis for seismic requirements found in current seismic design standards and model building codes. The Task Group also recommends that optional performance-based and limit state procedures and component cyclic testing procedures be incorporated into the RMI-developed specification. Compliance with these procedures will demonstrate that the storage racks have the capacity to resist maximum considered earthquake ground motions without collapse. It also is recommended that regulatory bodies periodically review the quality assurance programs of stores and implement any regulations needed to satisfy life-safety concerns that relate to the securing of rack contents and rack maintenance and use.